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Abstract

The benefits of limited feedback are studied in the context of some different
wireless channel models. Namely, we consider using the feedback for signature
optimization in Code-Division Multiple Access (CDMA) and multi-antenna chan-
nels, and power and rate optimization for multi-carrier transmission. Our results
are asymptotic as system dimensions tend to infinity, and explicitly characterize
the performance (e.g., output Signal-to-Interference-Plus Noise Ratio (SINR) or
capacity) as a function of feedback bits per degree of freedom (e.g., processing gain
or product of number of receive antennas times transmit antennas). Numerical
examples show that the asymptotic analysis accurately predicts the performance
of finite-size systems of interest.

1 Introduction

The performance, or achievable rate, associated with a wireless link generally depends
on how much the transmitter knows about the channel and interference at the receiver.
Namely, this information can influence the allocation of available resources, such as power
and rate, across available degrees of freedom to exploit channel conditions and avoid
interference.

In this paper, we give an overview of some recent work characterizing the benefits of
limited feedback in the context of a few wireless channel models.! We emphasize that
limited feedback is to be distinguished from partial feedback. Namely, limited feedback
means that the feedback channel has a finite data rate, so that in a given time interval,
the receiver relays some finite number of bits back to the transmitter. In contrast,
partial feedback typically means that the receiver sends back a measurement, or statistical
information about the channel. For example, partial feedback may take the form of a
channel estimate [1], or second-order statistics [2,3]. Here we consider only limited
feedback assuming that the channel and interference are stationary or slowly varying,
and ignore any channel estimation error.

The channel models we consider pertain to CDMA, space-time MIMO channels, and
multi-carrier (MC) signaling. In each case, the received signal is a vector given by the
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same general linear model, and the objective is to use the feedback to select signatures
(in the case of CDMA and MIMO channels), along with associated powers and rates.
Differences among the models are reflected in how the channel and signatures are defined
in time, space, and frequency.

For each scenario, our objective is to compute the performance measure (namely,
Signal-to-Interference Plus Noise Ratio (SINR) or capacity) as a function of the number
of feedback bits per degree of freedom (e.g., processing gain in the case of CDMA, or
number of subcarriers for MC signaling). Our results are asymptotic as the degrees of
freedom tend to infinity. Comparisons with simulation results show that the asymptotic
results presented here can accurately predict the performance of finite-size systems of
interest.

In the case of CDMA, we specify a feedback scheme, which we call “Random Vector
Quantization (RVQ)”, which is optimal, i.e., achieves an upper bound on received asymp-
totic SINR over all possible feedback schemes. Furthermore, by applying results from the
theory of extreme order statistics, this SINR can be explicitly computed for the matched
filter receiver, and approximated for the Minimum Mean Squared Error (MMSE) linear
receiver. For the other models, we specify achievable rates with some specific feedback
schemes. Namely, for MC signaling, the feedback consists of which carriers to activate
along with the number of bits per activated carrier.

Related work on the performance of beamforming for space-time MIMO channels
with limited feedback has been presented in [4-7]. The emphasis in that work is on
finding optimal quantization schemes for spatial signatures for finite-size systems. (Ref-
erences [4,5] only consider the Multi-Input/Single-Output (MISO) channel.) Additional
work in [6, 8] characterizes capacity for MIMO channels with different limited feedback
schemes, again for finite-size systems. For the MISO channel, RVQ is again asymptoti-
cally optimal, so that our performance results predict the performance of other optimal
feedback quantization schemes for systems with enough degrees of freedom.

2 System Model

We start with the basic discrete-time model for a vector channel with N x 1 received
vector

r(i) = HSAb(i) + n(i) (1)

at time 7, where b(z) = [bi(4),---,bx ()]’ is a K x 1 vector of transmitted symbols,
A is a K x K diagonal amplitude matrix, S is an N x K signature matrix, H is an
N x N channel matrix, and the noise n(i) is Gaussian with covariance matrix o?I. At
the receiver, we will assume that the received vector is filtered by the N x K matrix C,

y(i) = C'r(i) (2)

where { indicates Hermitian transpose. Our objective is to optimize a performance
measure, i.e., either received SINR or capacity, given that the receiver can feedback By
bits to the transmitter.

We will consider the following systems, corresponding to different choices for S, H,
and C. In all cases, the receiver is assumed to have perfect channel knowledge, and the
transmitted signal is constrained in average power.

CDMA: The symbols are transmitted from K users, who cannot coordinate their
choice of code words, although we assume synchronous transmissions. The k* column



of S is s, the spreading sequence for user k£, and the channel and amplitude matrices
H = A = Iy, the N x N identity matrix. Our objective is to select the signature for
user 1, 81, to maximize the received SINR in the presence of other random signatures
with ¢.7.d. elements.

Single-User Multiple-Input-Multiple-Output (MIMO) Channel: The K symbols em-
anate from a single source, and the transmitted symbol streams across transmit antennas
correspond to the same code word. The elements of the channel matrix are assumed to
be i.i.d. complex Gaussian, corresponding to K transmit antennas and NV receiver anten-
nas with flat fading Rayleigh channels between transmitter-receiver antenna pairs. The
objective is to select the signature and amplitude matrices to maximize the associated
capacity. We will assume an optimal receiver, so that C = 1I.

Single-User Multi-Carrier (MC) Transmission: The signature matrix S and receiver
matrix C are the inverse DFT and channel matrices, respectively, and the channel H is
circulant. Hence the overall channel matrix CTHS is diagonal, where the k** diagonal
element is the channel gain for the k™ carrier, or sub-channel. The elements of b(i) are
the symbols transmitted through the different sub-channels. The objective is then to
select the amplitudes A and bits per sub-channel to maximize the associated capacity.
Since the receiver does not have to specify signatures, the feedback needed to achieve the
optimal growth in capacity vs. N is substantially less than for previous cases.

3 CDMA

In this case the model reduces to » = Sb + m, and our objective is to specify the
signature 8; that maximizes the received SINR. With a matched filter (MF), ¢; = 81
(first column of C), and the SINR for user 1is v1 = 1/(0® + 37, s1s;[2) where we
assume ||sx]|> = 1 for &k = 1,---, K. With infinite feedback, we would select s; to
minimize the total interference power », |s!s,/2. In what follows we assume that the
interfering signatures sy, k # 2, are random i.7.d..

Given By feedback bits, we can choose one of 287 signatures from the codebook, or
quantization set V = {v;;1 < j < 28¥}. That is, the receiver selects

81 = argmax 1 (v)

where y;(v) is the SINR for user 1 with s; = v;. The problem is how to design the
codebook V, which maximizes the SINR. This optimization depends on the distribution
of the interfering signatures, and is difficult for finite NV and K. However, for large K and
N, the eigenvectors of the interference plus noise covariance matrix R, =), £1 sks,t—i—azI
are isotropically distributed. We will therefore consider choosing the vectors in V to have
i.7.d. elements with variance 1/N, so that ||v;|| — 1 in the mean square sense as N — oo.
We refer to this scheme as Random Vector Quantization (RVQ).

In general, we can choose the elements of vectors in V' according to any joint distri-
bution Fy,. With this in mind, let X; = 3", #('v;sk)Q, which has cumulative distribu-
tion function (cdf) Fx, and let W = min{X},---, X,y } be the minimum interference
over the set of available (quantized) signatures. The corresponding SINR for user 1 is
5 = 1/(c? + E[W]). The following theorem states that RVQ is asymptotically optimal,
i.e., asymptotically achieves the maximum SINR, where asymptotic refers to the large
system limit (N, K, By) — oo with fixed normalized load K = K/N and normalized
feedback bits per dimension By = By/N. In what follows, the superscript oo denotes
this large system limit. In particular, 777, is the large system SINR with RVQ.



Theorem 1 Let 5 denote the large system SINR, where the entire set of signatures V
1s chosen from an arbitrary distribution Fy,. Then

1
o < (o] - -
711 = ’Yrvq 0,2 + Wee
where .
o — . — . F_]_ -
W (K,N}IBIJIVI)—)oo E[W] (K,N}IBIIIVI)—)oo X (QBN) ’ (3)

and the latter limit converges for 0 < K <1 and By > 0.

The proof relies on the asymptotic theory of extreme statistics [9]. The cdf Fyx is a
Gamma distribution with parameters N and K, and (3) can be numerically evaluated
to determine ,. An example showing the asymptotic SINR for RVQ vs. feedback bits
per dimension By /N is shown in Figure 1 for K = 3/4 and background SNR=8 dB. (See
curves corresponding to MF.) Note that with 1 feedback bit per dimension, the SINR is
within 1 dB of the single-user performance, and is substantially higher than the SINR
obtained by feeding back a scalar quantized version of the optimal signature.

With a linear Minimum Mean Squared Error (MMSE) receiver, the SINR for user
1 with RVQ is given by frvq = max{fi,-- -, By5y } Where 3; = 'v;Rflvj, which has cdf
Fg. The asymptotic SINR is again maximized with RVQ, and is given by the following
Theorem.

Theorem 2 Let 35° denote the large system SINR with an MMSE receiver, where the
quantized signature set V is chosen from distribution Fy,. Then

1
[e’e) oo : -1

™4 (KN,By)—oo P
for 0 < K <1 and By > 0.

The cdf Fj for the SINR at the output of MMSE receiver with random signatures is
not known for finite K and N, but is asymptotically Gaussian [10]. Expressions for
the asymptotic mean $* and normalized variance ag /N are also given in [10]. Approxi-
mating Fg with this Gaussian distribution and applying Theorem 2 gives the following

approximation for 87,

Ia = 8" + 05/ (2108 2) By. (4)

Figure 1 compares the asymptotic SINR vs. By computed from (4) with simulated
values for N = 16. Note that ~fj’q — oo with By, whereas vq 18 upper bounded by the
single-user SNR.. This is because Fjg, which has compact support, is being approximated
with a Gaussian distribution, which does not have compact support.

Because the number of vectors in V increases exponentially with By, RVQ is im-
practical even for relatively small By. A simpler reduced-rank signature optimization
scheme, in which the signature is constrained to lie in a lower-dimensional subspace, is
analyzed in [11]. With scalar quantization (SQ) of the reduced-rank coefficients, this

scheme can perform close (e.g., within 1 dB) to the RVQ bound.
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Figure 1: SINR in dB versus feedback bits per dimension with MF and MMSE receivers.

4 Single-User MIMO Channel

We now consider a single-user channel with K transmit antennas and N receive antennas.
Letting * = S Ab, and assuming that the channel is known at the receiver, the normalized
channel capacity is Cy = + logdet (Iy + > HQHT') where Q = E[zz!] = S|A|2ST is
the covariance matrix for the transmitted signal. We wish to use the feedback to optimize
Q, assuming the channel matrix H has i.i.d. elements. Namely, without any feedback
the optimal Q = KLJZI Kk [12], i.e., power and information bits are allocated equally
across transmit antennas. With unlimited feedback, the optimal Q = UDU' where U
is a unitary matrix whose columns are eigenvectors of H'H, and D is a diagonal matrix
whose elements are computed by water-filling over the available dimensions.

The By feedback bits are used to specify a covariance matrix Q Specifically, we
can construct a codebook V = {Vi,---, V,sy }, corresponding to RVQ, which contains
K x D independent and isotropic unitary matrices. The covariance matrix is given by
Q; = 5V;V}' for 1< j<2B% where D is the rank of Q;, and the receiver determines

- ; 1 1
Q =arg max {C](\J,) = Nlogdet <I + ;HQ]-HT> } .

1<j<2BN

We can again evaluate the asymptotic performance in terms of the cdf of Cf\,, which we
denote as Fg, .

Theorem 3 As (N, K, By, D) — oo with fited N = N/K > 0, By = B_N/NQ, and
D = D/K, the sum mutual information per receive antenna I, = max; C](\J,) converges
almost surely to

1
I° = lim Fgl <1 - QTN) : (5)

v (NaKyDyBN)_>OO

Note that in this case, By grows in proportion to N2, due to the fact that Q has N?/N
elements. In analogy with the previous CDMA analysis with the MMSE receiver, F¢,, is



unknown for finite N, but is asymptotically Gaussian [13]. Using the Gaussian cdf gives
the approximate asymptotic sum mutual information

T2 =+ 0,4/ (21og2) By (6)

TVq

where 4 and o, can be determined from [13, Theorem 1.1]. Note that vaoq is a function

of both the rank D and feedback By, and can be optimized over D for a given By. This
is illustrated in Figure 2, which shows If\f’q vs. normalized rank D/K. These curves show
that the capacity becomes more sensitive to rank selection as the feedback increases. The
right graph shows mutual information vs. By for different SNRs 1 /o?. Curves are shown
for the optimal rank and full rank D = 1, and are compared with simulated values with
K = 8. Again, the asymptotic expression (6), based on the Gaussian approximation for
C’](g), increases beyond the capacity with unlimited feedback. In this case, feedback offers
only a modest increase in data rate.
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Figure 2: The left graph shows mutual information per receive antenna vs. normalized
rank with different amounts of feedback. The right plot shows the mutual information
vs. normalized feedback.

5 Multi-Carrier Transmission

In this case the received vector after filtering with C' (the FFT matrix) is y = H Ab+n,
where H is diagonal, and for convenience, E[nnl] = Iy. The diagonal elements of H are
the complex random sub-channel coefficients h;, : = 1,--- , N. The capacity conditioned
on the sub-channel gains is given by Cy = Zf\il log(1 + P;u;), where P, = A? is the
power assigned to sub-channel . The feedback can be used to specify the set of powers
{P;}, i.e., with unlimited feedback, {P;} is determined by water pouring.

In contrast to the previous models, the feedback is not used to specify signatures,
which reduces the amount of feedback needed to achieve a capacity close to the capacity
with unlimited feedback. An objective, then, is to characterize how the capacity scales
with NV with different amounts of feedback By. We first consider how the capacity scales
with unlimited feedback. In what follows, we assume that the sub-channel gain p; is a
random variable with pdf f, and cdf F,, and F,(z) = 1 — F,(z). Initially, we assume
that {u;} is i.i.d., and later consider the case where this sequence is correlated.



It will be useful to consider an on-off power distribution, in which the transmitter
allocates equal power P across a subset of sub-channels with gains that exceed a threshold
to. The power constraint then becomes Zf\il P 1,5, < P. Optimizing the threshold
gives the corresponding on-off capacity for finite IV,

N
clomo _ max D “log (1 + Ppas) Lo

i=1

where P depends on 9. The optimal threshold that maximizes C](Q’H'OH) is denoted as p.

In what follows, we say that two random sequences {z,} and {y,} are asymptotically
equivalent if lim, o T, /y, = 1 almost surely, and write z, < y,. The next theorem
specifies the asymptotic scaling for the capacity with water pouring (unlimited feedback),
C’](\?Vf), and the on-off capacity for a class of sub-channel gain distributions.

Theorem 4 If E|u|p > x] — x is finite for all x, then
Oy = O™ < Py (7)

where i is the optimal threshold and satisfies

gy > i) = 2 (Bl > i) = ) ®
That is, the on-off power allocation is asymptotically optimal in the sense that the
scaling with N is the same as with water pouring. To achieve this optimal scaling, it is
necessary to feed back the allocation of rates across activated sub-channels. To limit the
feedback with the on-off power allocation, we must therefore select the rate Ry for the
k™ sub-channel from a discrete set R = {0, Ry,--- , R,_1}, where n is the number of of
rate levels. That is, the range of channel gains is divided into intervals, {Vn,i}?z_ol, each
of which is associated with a particular rate R; = log (1 + Pvy,;). Constant power P is
assigned to sub-channels with p > vno = po. If vn; < g < Vnit1 (Vnn = 00), then the
corresponding rate R, = R;, and Ry = 0 if y, < po. The total achievable rate with this
finite-precision rate control scheme is therefore R(™) = max Z,ivzl Ry.

Theorem 5 If E[u|p > x| — x is finite for all x, then given g, the set of channel
thresholds {vy, ;}, which mazimizes RP) satisfies

Uno = Mo

P FGsn) | cgcp g

2 - n,t—1 - Flw) >~ 0 (9)
Unn—1 = Vpn-2 + %

5.1 Rayleigh Fading

We now assume that f,, () = e *, corresponding to Rayleigh fading sub-channels. From
(8), the optimal threshold p < log N, and Theorem 4 is restated as the following corol-
lary.

Corollary 1 With Rayleigh sub-channels, C’](wa) = C](VO"'Om < Plog N. Furthermore, the
optimal number of active sub-channels N, < Plog> N.



This implies that the feedback needed to specify all active subchannels grows as log® N.

For comparison, we now consider the case in which only a finite number of sub-
channels, M, can be activated. It is straightforward to show that asymptotically, the
optimal scheme is to spread the power across the M sub-channels with the largest channel
gains. We are interested in the asymptotic behavior of the corresponding channel capacity
C’](VM), and the achievable rate with finite-precision rate control, R™). In the latter case,
with one bit to specify the rate for each sub-channel, the feedback By = M log V.

Theorem 6 With M active sub-channels CJ(VM) = Mloglog N. Furthermore, if the feed-
back By = M log N, then the achievable rate RM) s a random variable with

E[C\ — ROD] & (M = Dmy — XM m,
(10)
var[C](VM) — R(M)] — Zfi;l JZ-Q + (M — 1)2012\,[

where m; = Elog Z|, 0 = var{log Z|, and Z is an order-i Gamma random variable.

The proof relies on the aymptotic theory of extreme statistics [9].

Given the threshold p, the optimal channel thresholds for finite-precision rate control
can be determined from Theorem 5. In this case, the increment v, ; — v, ;_1 depends only
on n, and not on g, and the achievable rate is given in the following theorem.

Theorem 7 If By < Plog® N, then R < Clonol)  Furthermore, C(o7of) — RUP)
converges in distribution to a Gaussian random variable with mean P(1—e~¥»17H0)) gnd
variance 2P(1 — e~ (n1=Ho)),

Figure 3 shows plots of mean data rate vs. SNR for multi-carrier transmission with
512 Rayleigh sub-channels. Achievable rates are shown with water-pouring (C™9), the
optimal on-off power allocation with unlimited feedback, or infinite-precision rate control
(Cmof)) "and on-off power allocation with finite-precision rate control with 1, 2, and 4
rate levels per active sub-channel. The figure shows that C©°® is very close to C"0. As
stated in Theorem 7, the gap between the achievable finite-precision data rate and C("9)
increases with power. As expected, the gap between the finite- and infinite-precision rate
curves decreases as n increases.

5.2 Correlated Fading

We now consider MC performance with limited feedback where the sub-channel sequence
{u;} is a Markov chain. The mean capacity does not change, since it depends only on the
first-order statistics; however, the correlation can be exploited to reduce the feedback. In
what follows, we will assume finite-precision rate control with a given threshold po. The
feedback then represents a sequence of N indices, where each index indicates the rate
assigned to the corresponding sub-channel. The minimum feedback is then the entropy
of this sequence.

Let v = Pr{u; > po} and g = Pr{u; > polpi—1 > o}, i-e., ¢ is the probability

sub-channel i is active given sub-channel 7 — 1 is active. Also, let Bj(\i,id) be the minimum

feedback per sub-channel with i.i.d. sub-channels, in which case ¢ = v, and let BI(\for)
be the minimum feedback per sub-channel with correlated sub-channels. If l%q — 0 as

Bg:or)(uo) - 1 _

N — th I
o0, VI Za@ )

q.
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Figure 3: Mean channel capacity vs. SNR for water-filling and on-off power allocations
with infinite- and finite-precision rate control.

As an example, consider correlated Rayleigh fading, where the sub-channel coefficient
h; = ah;_1 + & with 0 < a < 1, and &; is a complex Gaussian random variable, which
is independent of h;_;. The parameter o determines the correlations between the sub-
channels. The reduction in feedback obtained by exploiting the sub-channel correlations
clearly depends on the rate at which « — 1 with N. Let W be the channel bandwidth,
and define the coherence bandwidth, W,, to be the bandwidth of L consecutive sub-
channels with correlation larger than some given p, i.e., L = max {l : cov(u;, i) < p}-
The number of coherence bands spanned by the channel is assumed to be fixed, i.e.,
WC = L/N = § where 0 is a constant. Applying this to the autoregressive model for {h; }

log 1

___P
we have o« = e~ 27, and a — 1 as N — oo.

(#ed) _

Corollary 2 If limy_.o 11 ~ = 1, then By < e7Muy, and the feedback rate for the

1
log >
wd -

autoregressive channel model B](\fm") = %6_“0 ,ug where §' =

Comparing the feedback rates for the autoregressive and i.4.d cases gives Bj(sm) / B](\i,id) =
5'\/%. Specifically, if 1o < blog N, where b > 1/2 is a constant, then By™ /By® <

\fa'\/@

6 Conclusions

We have presented asymptotic performance results for wireless communications models
with limited feedback. In the case of CDMA and MIMO channels, the feedback bits scale
linearly with dimensions N and quadratically with N, respectively. The performance can
be explicitly computed with RVQ, assuming a matched filter. For the MC model with
Rayleigh fading sub-channels, a feedback rate, which scales as O(log® N) can achieve
the maximum O(log N) asymptotic growth in capacity. This reduction in feedback is a
result of the MC signatures being specified a prior: as sinusoidal. Additional issues to
be studied include the effect of inaccurate channel estimates on performance (i.e., the



combination of limited and partial feedback), and determining the benefits of limited
feedback strategies with time-varying channels.
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