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Optimization of Training and Feedback

Overhead for Beamforming over Block Fading

Channels
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Abstract

We examine the capacity of beamforming over a single-user, multi-antenna link taking into account

the overhead due to channel estimation and limited feedback of channel state information. Multi-input

single-output (MISO) and multi-input multi-output (MIMO) channels are considered subject to block

Rayleigh fading. Each coherence block contains L symbols, and is spanned by T training symbols, B

feedback bits, and the data symbols. The training symbols are used to obtain a Minimum Mean Squared

Error estimate of the channel matrix. Given this estimate, the receiver selects a transmit beamforming

vector from a codebook containing 2B i.i.d. random vectors, and sends the corresponding B bits back

to the transmitter. We derive bounds on the beamforming capacity for MISO and MIMO channels and

characterize the optimal (rate-maximizing) training and feedback overhead (T and B) as L and the

number of transmit antennas Nt both become large. The optimal Nt is limited by the coherence time,

and increases as L/ logL. For the MISO channel the optimal T/L and B/L (fractional overhead due

to training and feedback) are asymptotically the same, and tend to zero at the rate 1/ logN t. For the

MIMO channel the optimal feedback overhead B/L tends to zero faster (as 1/ log 2 Nt).
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I. INTRODUCTION

With perfect channel knowledge at the transmitter and receiver, the capacity of a multi-antenna

system with independent Rayleigh fading increases with the number of antennas [1], [2]. In

practice, the channel estimate at the receiver will not be perfect, and furthermore, this estimate

must be quantized before it is relayed back to the transmitter. This has motivated work on the

performance of feedback schemes with imperfect channel knowledge [3]–[9], and the design and

performance of limited feedback schemes for Multi-Input Multi-Output (MIMO) and Multi-Input

Single-Output (MISO) channels (e.g., see [9]–[17] and the recent survey paper [18]). All of the

previous work on limited feedback assumes perfect channel knowledge at the receiver. Here we

consider a model that takes into account both imperfect channel estimation at the receiver and

limited channel state feedback.

We focus on single-user MISO and MIMO links with rank-one precoders (beamforming), and

study the achievable rate as a function of overhead for channel estimation and channel state

feedback. Our objective is to characterize the optimal amount of overhead and the associated

achievable rate, and to show how those scale with the system size (i.e., as the number of transmit

and/or receive antennas become large). Motivated by practical systems, a pilot-based scheme for

channel estimation is assumed. Given a finite coherence time, the number of antennas that can be

used effectively is limited by the channel estimation error and quantization error associated with

the transmit beam. We show how the optimal (rate-maximizing) number of transmit antennas

scales with the system size.

More specifically, an independent identically distributed (i.i.d.) block Rayleigh fading channel

is considered in which the channel parameters are stationary within each coherence block, and are

independent from block to block. The block length L is assumed be constant, and the transmitted

codewords span many blocks, so that the maximum achievable rate is the ergodic capacity. Each

coherence block contains T training symbols and D data symbols. Furthermore, we assume that

after transmission of the training symbols, the transmitter waits for the receiver to relay B bits

over a feedback channel, which specify a particular beamforming vector. This delay, in addition

to the T training symbols, must occur within the coherence block, and is therefore counted as
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part of the packet overhead.1

We assume that the receiver computes a Minimum Mean Square Error (MMSE) estimate of

the channel, based on the training symbols, and uses the noisy channel estimate to choose a

transmit beamforming vector. The Random Vector Quantization (RVQ) scheme in [14], [16],

[21] is assumed in which the beamformer is selected from a codebook consisting of 2B random

vectors, which are independent and isotropically distributed, and known a priori at the transmitter

and receiver. The associated codebook index is relayed using B bits via a noiseless feedback

channel to the transmitter. The capacity of this scheme with perfect channel estimation is analyzed

in [14], [16], [17], [21], [22]. It is shown in [14] that the RVQ codebook is optimal (i.e.,

maximizes the capacity) in the large system limit in which number of transmit antennas N t and

B tend to infinity with fixed ratio B̄ = B/Nt. In [14], [23], RVQ has been observed to give

essentially optimal performance for systems with small Nt. Furthermore, for the MISO channel

the performance averaged over the random codebooks can be explicitly computed [16].

The capacity with MMSE channel estimates at the receiver (with or without limited feedback)

is unknown. We derive upper and lower bounds on the capacity with RVQ and limited feedback,

which are functions of the number of training symbols T and feedback bits B. Given a fixed

block size, or coherence time L, we then optimize the capacity bounds over B and T . Namely,

small T leads to a poor channel estimate, which decreases capacity, whereas large T leads to an

accurate channel estimate, but leaves few symbols in the packet for transmitting the message.

This trade-off has been studied in [24], [25] for MIMO channels without feedback. Here there

is also an optimal amount of feedback B, which increases with the training interval T . That is,

more feedback is needed to quantize more accurate channel estimates.

We characterize the optimal overhead due to training and feedback in the large system limit as

the coherence time L and number of transmit antennas Nt both tend to infinity with fixed ratio

L̄ = L/Nt. For the MIMO channel we also let the number of receiver antennas Nr → ∞ with

fixed Nt/Nr. This allows a characterization of the achievable rate as a function of the number

of feedback bits per degree of freedom [14].2

1An implicit assumption is that the transmitter cannot learn the channel by detecting a received signal in the reverse direction,

as in some Time-Division Duplex systems (e.g., see [19]). Although the feedback overhead is counted as part of the coherence

time, a similar penalty arises with a Frequency-Division Duplex model [20].

2See also the tutorial on large random matrix theory [26].

May 22, 2010 DRAFT



4

For both MISO and MIMO channels the optimal normalized training T̄ = T/L, which

maximizes the bounds on capacity, tends to zero at the rate 1/ log Nt. For the MISO channel

the normalized feedback B̄ = B/L also tends to zero at this rate. Moreover, the training and

feedback require the same asymptotic overhead. For the MIMO channel the optimal B̄ = B/L

tends to zero at the rate 1/ log2 Nt. Hence the overhead due to feedback is lower for the MIMO

channel than for the MISO channel. This is apparently due to the additional degrees of freedom

at the receiver, which can compensate for the performance loss associated with quantization

error.

For both MISO and MIMO channels, the optimal T increases as Nt/ log Nt, and we observe

that the associated capacity can be achieved by activating only Nt/ log Nt antennas (assuming

Nt increases linearly with L). Equivalently, for this pilot-based scheme with limited feedback,

the optimal number of (active) transmit antennas increases as L/ log L. Hence the training and

feedback overhead pose a fundamental limit on the number of antennas that can be effectively

used. The capacity with optimized overhead grows as log Nt. This is the same as with perfect

channel knowledge; however, there is a second-order loss term, which increases as log log Nt.

A similar type of model for optimizing feedback overhead has been previously considered in

[20]. A key difference is that here the relation between training and channel estimation error is

explicitly taken into account. The model we present is also closely related to the two-way limited

feedback system considered in [27], [28] (see also [19]). However, here the feedback channel

is simply modeled with a fixed rate (i.e., is not the result of an optimization), and reflects the

likelihood that the forward channel may be quite different from the reverse (feedback) channel.

Also, the scaling of the optimal overhead and capacity with system size, given a fixed coherence

time and fixed feedback rate, is not addressed in the preceding references. Similar types of

overhead and capacity scaling results to those presented here are presented in [29] for a single-

user wideband multi-carrier channel and in [30] for the cellular downlink based on Orthogonal

Frequency Division Multiple Access.

The rest of the paper is organized as follows. Section II describes the multi-antenna channel

model. Bounds on the beamforming capacity for the MISO channel with channel estimation

and limited feedback are presented in Section III along with a characterization of the optimal

(capacity-maximizing) training and feedback lengths in the large system limit. Corresponding

results for the MIMO channel are presented in Section IV. Numerical results for finite-size MISO
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and MIMO channels are shown in Section V, and conclusions are presented in Section VI.

II. SYSTEM MODEL

We consider a point-to-point i.i.d. block fading channel with Nt transmit antennas and Nr

receive antennas. A rich scattering environment is assumed so that the channel gains correspond-

ing to different pairs of transmit/receive antennas are independent and Rayleigh distributed. The

ith Nr × 1 received vector in a particular block is given by

r(i) = Hvb(i) + n(i) for 1 ≤ i ≤ D (1)

where H is an Nr × Nt channel matrix whose elements are independent, complex Gaussian

random variables with zero mean and unit variance, v is an Nt×1 unit-norm beamforming vector,

b is the transmitted symbol with unit variance, n is additive white Gaussian noise (AWGN) with

covariance σ2
nI , and D is the number of data (information) symbols in a block.

A. Random Vector Quantization

In prior work [14], we have analyzed the channel capacity with perfect channel knowledge at

the receiver, but with limited channel knowledge at the transmitter. Specifically, the optimal

beamformer is quantized at the receiver, and the quantized version is relayed back to the

transmitter. Given the quantization codebook V = {v1, . . . , v2B}, which is also known a priori

at the transmitter, and the channel H , the receiver selects the quantized beamforming vector to

maximize the instantaneous rate,

v(H) = arg max
vj∈V

{
log(1 + ρ‖Hvj‖2)

}
(2)

where ρ = 1/σ2
n is the background signal-to-noise ratio (SNR). The (uncoded) index for the

rate-maximizing beamforming vector is relayed to the transmitter via an error-free feedback

link. The capacity depends on the beamforming codebook V and B. With unlimited feedback

(B → ∞) the v(H) that maximizes the capacity is the eigenvector of H †H , which corresponds

to the maximum eigenvalue.

We will assume that the codebook vectors are independent and isotropically distributed over

the unit sphere. It is shown in [14], [21] that this RVQ scheme is optimal (i.e., maximizes the

achievable rate) in the large system limit in which (B, Nt, Nr) → ∞ with fixed normalized
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feedback B̄ = B/Nt and N̄r = Nr/Nt. (For the MISO channel Nr = 1.) Furthermore, the

corresponding capacity grows as log(ρNt), which is the same order-growth as with perfect

channel knowledge at the transmitter. Although strictly speaking, RVQ is suboptimal for a finite-

size system, numerical results indicate that the average performance is often indistiguishable from

the performance with optimized codebooks [14], [23].

B. Channel Estimation

In addition to limited channel information at the transmitter, here we also account for channel

estimation error at the receiver. Letting Ĥ be the estimated channel matrix, the receiver selects

v(Ĥ) assuming that Ĥ is the actual channel, i.e.,

v(Ĥ) = arg max
vj∈V

{
log(1 + ρ‖Ĥvj‖2)

}
. (3)

We will assume that the receiver computes the linear MMSE estimate of H given the

received vectors corresponding to T training vectors. Specifically, the transmitter transmits T

training symbols bT (1), · · · , bT (T ), where the training symbol bT (i) modulates the corresponding

beamforming vector vT (i). For the MISO channel the row vector of T received samples is given

by

rT = hVTBT + nT (4)

where the channel h is a 1 × Nt row vector, VT = [vT (1) · · ·vT (T )], BT = diag{bT (i)}, and

nT = [n(1) · · ·n(T )]. The channel estimate is ĥ = rT C, where the T × Nt linear MMSE

channel estimation filter is given by

C = arg min
C̃

E[‖h − rT C̃‖2] (5)

= VT BT (V †
T VT + σ2

nI)−1. (6)

The MSE

σ2
w = E[‖hi − ĥi‖2] = 1 − 1

Nt
trace{C†RT C} (7)

where hi and ĥi are ith elements of h and ĥ, respectively, and the received covariance matrix

RT = E[r†
T rT ] = BT V †

T VTB†
T + σ2

nI. (8)

The preceding expressions also apply to the MIMO channel where the estimation is for a

particular row of H . That is, C is replaced by Ci, which is applied to the ith receiver antenna,
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and used to estimate the ith row of H . The MSE for each element of H therefore remains the

same.

Because the elements of H are assumed to be complex i.i.d. Gaussian random variables, we

have

H = Ĥ + w (9)

where the estimate Ĥ and the error matrix w are independent, and each contain i.i.d. complex

Gaussian elements. The elements of w have zero mean and variance σ2
w, so that Ĥ has zero

mean and covariance (1 − σ2
w)I .

The variance σ2
w clearly decreases as T increases. Furthermore, since the beamforming vectors

during training VT are known a priori to the transmitter and receiver, those can be chosen to

minimize the MSE. It is shown in [24] that the corresponding set of (unit-norm) beamforming

vectors achieves the Welch bound with equality. We therefore have that [31]

VTV †
T = T̄I if T > Nt, (10)

V †
T VT = I if T ≤ Nt. (11)

Applying (6)-(11), we obtain the variance of the estimation error

σ2
w =

⎧⎨
⎩ 1 − T̄

1+ρ−1 , T̄ < 1

1
1+ρT̄

, T̄ ≥ 1
. (12)

C. Ergodic Capacity

In what follows, we assume that the forward and feedback links are time-division multiplexed,

and each block consists of T training symbols, B feedback bits, and D data symbols. Given

that the size of each block is L symbols, we have the constraint

L = T + μB + D (13)

where μ is a conversion factor, which relates bits to symbols. Our objective is to maximize the

ergodic capacity, which is the maximum mutual information between b and r,

max
T,B

{C = E[max
pb

I(r; b|H , Ĥ, v(Ĥ))]} (14)

subject to (13), where pb is the probability density function (pdf) for the transmitted symbol

b, and the expectation is over the channel H , the estimation error w, and the RVQ codebook

May 22, 2010 DRAFT



8

V . Determining the ergodic capacity of RVQ with channel estimation appears to be intractable,

so instead we derive upper and lower bounds, which are functions of D, B, and T . We then

maximize both bounds over {D, B, T}, subject to (13).

III. MULTI-INPUT SINGLE-OUTPUT CHANNEL

A. Capacity Bounds

We first consider a MISO channel with 1×Nt channel vector h. Applying Jensen’s inequality,

we obtain the upper bound on ergodic capacity

C = E[max
pb

I(b; r|ĥ, v(ĥ), h)] (15)

= E[log(1 + ρ|hv(ĥ)|2)] (16)

≤ log(1 + ρE[|hv(ĥ)|2]) (17)

where the maximizing pdf is Gaussian, and the expectation is over h, the estimation error w, and

the random codebook V . Substituting h = ĥ + w into the expectation in (17) and simplifying

gives

E[|hv(ĥ)|2] = σ2
w + E[|hv(ĥ)|2]. (18)

Since ‖ĥ‖2 and ν � |ĥv(ĥ)|2/‖ĥ‖2 are independent [13], [16], we have

E[|ĥv(ĥ)|2] = E[‖ĥ‖2]E[ν] = (1 − σ2
w)NtE[ν]. (19)

With RVQ we have

ν = max
1≤j≤2B

{νj = |ĥvj |2/‖ĥ‖2} (20)

where the νj’s are i.i.d. with pdf given in [12]. The pdf for ν and associated mean can be

explicitly computed [16]. The mean is given by

E[ν] = 1 − 2BB

(
2B,

Nt

Nt − 1

)
(21)

where the beta function B(m, n) =
∫ 1

0
tm−1(1 − t)n−1 dt for m and n > 0. We can bound E[ν]

as follows.

Lemma 1: For B̄ ≥ 0 and Nt ≥ 2,

E[ν] ≤ 1 − 2−B̄ +
1 + (γ − 1)2−B̄ + 2−B̄Nt

Nt − 1
(22)

E[ν] ≥ 1 − 2−B̄ (23)
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where γ = 0.5772 . . . is the Euler constant.

The proof is given in Appendix A. We note that E[ν] → 1 − 2−B̄ as Nt → ∞. Substituting

(18)-(22) into (17) gives an upper bound on capacity.

To derive a lower bound on capacity, we use the estimation error equation h = ĥ + w to

write

r(i) = (ĥv(ĥ))b(i) + (wv(ĥ))b(i) + n(i)︸ ︷︷ ︸
z(i)

. (24)

Since w and ĥ are independent, it follows that E[z(i)b(i)] = 0. It is shown in [24], [32] that

replacing z(i) with a zero-mean Gaussian random variable minimizes the mutual information

I(r; b|ĥ, v(ĥ)) and therefore gives a lower bound on the capacity with channel estimation and

quantized beamforming. The lower bound is maximized when b(i) has a Gaussian pdf, i.e.,

C ≥ E[max
pb

min
pz

I(r; b|ĥ, v(ĥ))] = E

[
log

(
1 +

|ĥv(ĥ)|2
σ2

z

)]
(25)

where pz and σ2
z denote the pdf and variance for z, respectively. We derive the following lower

bound on C by applying the inequality in [33].

Lemma 2:

E

[
log

(
1 +

1

σ2
z

|ĥv(ĥ)|2
)]

≥ (1 − dNt) log

(
1 +

1

σ2
z

E[|ĥv(ĥ)|2]
)

(26)

where

d(Nt) =
1

2

√√√√√ 1

Nt

+

(
1 +

1

Nt

) Γ
(
1 + 2

Nt−1

)
− Γ2

(
1 + 1

Nt−1

)
(1 + 2−B̄Nt)

− 2
Nt−1

2
B̄+ B̄

Nt−1 − Γ
(
1 + 1

Nt−1

) (27)

and the gamma function Γ(m) =
∫ ∞

0
tm−1e−t dt for m > 0.

The proof is given in Appendix A. We note that d(Nt) → 0 as Nt → ∞.

To obtain a lower bound on capacity C, we substitute σ2
z = σ2

w + σ2
n, (23), and (26)-(27) into

(25). The capacity bounds are summarized as follows.

Theorem 1: The capacity for a MISO channel with channel estimation variance σ2
w and

normalized feedback B̄ satisfies

Cl ≤ C ≤ Cu for B̄ ≥ 0 and Nt ≥ 2 (28)
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where

Cl = (1 − d(Nt)) log

(
1 + ρ

1 − σ2
w

1 + ρσ2
w

(1 − 2−B̄)Nt

)
, (29)

Cu = log

(
1 + ρσ2

w + ρ(1 − σ2
w)Nt

(
1 − 2−B̄ +

1 + (γ − 1)2−B̄ + 2−B̄Nt

Nt − 1

))
. (30)

The gap between the two bounds tends to zero as ρ → 0 (since both Cu and Cl tend to zero),

and as Nt → ∞. With fixed B̄ and σ2
w the bounds (and the capacity) grow as O(log Nt) as

Nt → ∞. Substituting (12) for σ2
w gives the bounds as a function of training T .

Fig. 1 compares the bounds in Theorem 1 with (16) and the tighter lower bound (25). The

bounds are plotted versus Nt with parameters B/Nt = 1 (one bit per antenna coefficient),

σ2
w = 0.15, and SNR ρ = 5 dB. The tighter bounds, which are analytically intractable, are

evaluated by Monte Carlo simulation and shown as ◦’s and ×’s in the figure. The plots show

that the upper bound in Theorem 1 is close to (16) even for small Nt while the lower bound in

the Theorem is close to (25) for much larger Nt. Since RVQ requires an exhaustive search over

the codebook, and the number of entries in the codebook grows exponentially with the number

of antennas, simulation results are not shown for Nt > 12. As expected, both the upper and

lower bounds grow at the same rate as Nt increases.

B. Asymptotic Behavior

We now study the behavior of the optimal T, B and D, and the capacity as Nt → ∞. With D

transmitted symbols in an L-symbol packet the effective capacity C = (D̄/L̄)C where D̄ = D/Nt

and L̄ = L/Nt. The associated bounds are Cu = (D̄/L̄)Cu and Cl = (D̄/L̄)Cl. From Theorem 1

and (12), we can write Cl and Cu as functions of {T̄ , B̄, D̄} and optimize, i.e., for the lower

bound we wish to

max
T̄ ,B̄,D̄

Cl (31)

subject to T̄ + μB̄ + D̄ = L̄. (32)

Let {T̄ o
l , B̄o

l , D̄
o
l } denote the optimal values of T̄ , B̄, and D̄, respectively, and let Co

l denote the

maximized lower bound on capacity. Similarly, maximizing the upper bound gives the optimal

parameters {T̄ o
u , B̄o

u, D̄
o
u} and the corresponding bound Co

u. These optimized values can be easily
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computed numerically, and also allow us to characterize the asymptotic behavior of the actual

capacity.3

Theorem 2: Let {T̄ o, B̄o, D̄o} = arg max{T̄ ,B̄,D̄} C subject to (32). As Nt → ∞,

T̄ o log Nt → L̄ (33)

B̄o log Nt → 1

μ
L̄ (34)

and the capacity satisfies

Co − log(ρNt) + 2 log log Nt → ζ (35)

where ζ is a constant bounded by

ζ∗ − log(1 + ρ) ≤ ζ ≤ ζ∗ (36)

where ζ∗ = log(L̄2 log(2)) − log(μ(1 + ρ−1)) − 2.

The proof is given in Appendix C. Combining (33) and (34) with (32) gives the corresponding

behavior of the data segment
D̄o

L̄
= 1 − δ(Nt) (37)

where δ(Nt) log Nt/2 → 1.

According to the theorem, as Nt becomes large, to maximize the achievable rate the fraction of

L̄ devoted to training and feedback tends to zero, in which case the rate increases as log(ρNt)−
2 log log Nt. The achievable rate with RVQ and perfect channel estimation is E[log(1+ρ‖h‖2)],

which grows as log(ρNt). Hence the loss of 2 log log Nt is due to imperfect channel estimation.4

Theorem 2 also implies that μB/T → 1, i.e., the fraction of the packet devoted to feedback

is asymptotically the same as that for training. This equal allocation therefore balances the

reductions in capacity due to estimation and quantization.

The preceding analysis applies if the beamforming vectors during training are chosen to be unit

vectors. Namely, the matrix VT can be taken to be diagonal, which corresponds to transmitting

the sequence of training symbols over the transmit antennas successively one at a time. Hence

the fact that the optimal T increases as Nt/ log Nt implies that only Nt/ log Nt antennas are

3In what follows all logarithms are assumed to be natural.

4The capacity estimate in the theorem becomes accurate when Nt is large enough so that L̄/ log Nt is small, in which case

the loss term 2 log log Nt is greater than the constant offset ζ.
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activated. Since L̄ = L/Nt is fixed, we conclude that as the coherence time L increases, the

optimal number of transmit antennas should increase as L/ log L. The training and feedback

overhead therefore reduces the number of antennas that can be effectively used by a factor of

1/ log L.

IV. MULTI-INPUT MULTI-OUTPUT CHANNEL

In this section, we let the number of receive antennas Nr scale with Nt. As for the MISO

channel, we can bound the capacity with limited training and feedback as follows,

C ≤ Cu = log(1 + ρσ2
w + ρE[η]) (38)

C ≥ Cl = (1 − c(Nt)) log

(
1 +

ρ

1 + ρσ2
w

E[η]

)
(39)

where η = v(Ĥ)†Ĥ†Ĥv(Ĥ) and

c(Nt) =
ση

2E[η]
(40)

where ση is the standard deviation of η.

We would like to express the bounds (38) and (39) as functions of T̄ and B̄. As discussed in

Section II, the variance of the estimation error is again given by (12). Although it is difficult to

evaluate E[η] explicitly for finite (Nt, Nr, B), it can be computed in the large system limit as

the parameters tend to infinity with fixed ratios N̄r = Nr/Nt and B̄. Specifically, since Ĥ has

i.i.d. elements with variance 1 − σ2
w, we have

1

Nt

η −→ (1 − σ2
w)γrvq (41)

in the mean square sense, where the asymptotic received signal power with RVQ γrvq is evaluated

in [14], and is a function of N̄r and B̄. Therefore

E[η] = (1 − σ2
w)γrvqNt + κ(Nt) (42)

where κ(Nt)/Nt → 0. Characterizing κ(Nt) explicitly appears to be difficult, but this is not

needed to prove the following theorem.5 Substituting (42) and (12) into (38) and (39) gives

upper and lower bounds on the capacity, Cl and Cu, respectively, as functions of T̄ and B̄.

5We will assume that κ(Nt) is a smooth function of T̄ and B̄ for all Nt, and that κ(Nt)/Nt converges to zero uniformly

over all T̄ and B̄.
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Maximizing both bounds over T̄ and B̄ leads to the following theorem, which characterizes the

asymptotic behavior of the actual capacity.

Theorem 3: Let {T̄ o, B̄o, D̄o} = arg max{T̄ ,B̄,D̄} C subject to (32). As (Nt, Nr) → ∞ with

fixed N̄r = Nr/Nt,

T̄ o log Nt −→ L̄ (43)

B̄o log2 Nt −→ L̄2 log 2

2μ2N̄r

(44)

and the capacity satisfies

Co − log(ρNt) + log log Nt → ξ (45)

where

ξ∗ − log(1 + ρ) ≤ ξ ≤ ξ∗ (46)

and ξ∗ = log(L̄N̄r) − log(1 + ρ−1) − 1.

The proof is given in Appendix D. Combining (43), (44), and (32) gives the corresponding

behavior of the optimized data segment

D̄o

L̄
= 1 − ε1(Nt) − ε2(Nt) (47)

where ε1(Nt) log Nt → 1 and 2N̄rμ
L̄ log 2

ε2(Nt) log2 Nt → 1.

Theorem 3 states that the optimal training length for the MIMO channel grows as Nt/ log Nt,

which is the same as for the MISO channel. Hence as Nt becomes large, only Nt/ log Nt

transmit antennas should be activated. (All receive antennas are used, since this does not change

the training overhead.)

Theorem 3 also states that the capacity with limited training and feedback increases as

log(ρNt) − log log Nt. For large Nt the loss in achievable rate due to training and feedback

therefore increases as log log Nt, as opposed to 2 log log Nt for the MISO channel. This gain is

due to the smaller MIMO feedback overhead. Namely, because of the additional antennas for

the MIMO channel, the optimal normalized feedback length tends to zero at the rate 1/ log2 Nt,

as opposed to 1/ logNt for the MISO channel. Note, however, that the training overhead is

the same since the same training symbols are used to estimate the channel gains to all receive

antennas simultaneously. Hence the ratio of optimized feedback to training overhead for the

MIMO channel μB̄o

T̄ o → 0 as 1/ log Nt.
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V. NUMERICAL RESULTS

Fig. 2 shows achievable rates for the MISO channel versus normalized coherence time L̄ =

L/Nt with different assumptions about channel knowledge at the transmitter and receiver. Three

curves are shown: (1) the optimized lower bound on capacity Co
l , (2) the capacity assuming

the receiver knows the channel, but with a quantized beamformer, and (3) the capacity with

perfect channel knowledge at the transmitter and recevier (optimal beamforming). Parameters

are Nt = 10, ρ = 5 dB, and μ = 1 (BPSK feedback). As expected, the gaps between the curves

diminishes to zero with increasing coherence time, albeit slowly. This reflects the fact that the

training and feedback overhead tends to zero as 1/ logL.

Fig. 3 illustrates the sensitivity of the capacity for the MISO channel to different choices for

training and feedback overhead. The lower bound Co
l is plotted versus the fractional overhead

(T̄ +μB̄)/L̄ with different relative allocations T̄ /(μB̄). Parameters are L̄ = 100, Nt = 6, μ = 1,

and ρ = 5 dB. The solid line corresponds to optimized overhead T o
l and Bo

l . The capacity is

zero when T̄ +B̄ = 0, since the estimate is uncorrelated with the channel, and when T̄ +B̄ = L̄,

since D̄ = 0. With equal amounts of training and feedback the rate is essentially equal to that

with optimized parameters. The peak is achieved when (T̄ + B̄)/L̄ = 0.1. The performance is

relatively robust to this choice, i.e., small deviations from this value result in a relatively small

performance loss, although the performance loss increases substantially as the deviations become

larger. Likewise, the figure also shows that there is a significant performance degradation when

B̄ deviates significantly from T̄ .

The optimized training, feedback, and data portions of the packet (normalized by the packet

length L) versus Nt for the MIMO channel are shown in Fig. 4. These values were obtained

by numerically optimizing the capacity lower bound, and are therefore denoted as Bo
l , T o

l , and

Do
l in the figure. System parameters are N̄r = 2, L̄ = 50, μ = 1, and ρ = 5 dB. As predicted

by Theorem 3, both the optimal T̄ and B̄ decrease to zero, with B̄ decreasing somewhat faster

than T̄ . The associated capacity lower bound is shown in Fig. 5. Also shown is the capacity

lower bound with the heuristic choice of parameters B̄ = 1 (one feedback bit per coefficient)

and T̄ = 1.5 (1.5 training symbols per coefficient). For Nt = 3, the bound with optimized

parameters is approximately 10% greater than that with the heuristic choice. Those results are

compared with the capacity with perfect channel knowledge at both the transmitter and receiver,
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and the capacity with perfect channel knowledge at the receiver only with Bo
l feedback bits.

This comparison indicates how much of the loss in achievable rate for the model considered is

due to channel estimation at the receiver (including associated overhead), and how much is due

to quantization of the precoding matrix.

The results show that for Nt = 3, the capacity with perfect channel knowledge at both the

transmitter and receiver is about 40% larger than the rate with optimized feedback and training

lengths. Knowing the channel at the receiver achieves most of this gain, largely due to the

elimination of associated training overhead. Of course, this gap tends to zero as the block size

L̄ → ∞. Also shown in the figure for comparison is the capacity lower bound for a MISO channel

with optimized training and feedback lengths. This is substantially lower than that shown for

the MIMO channel. From Theorems 2 and 3 the gap between the optimized lower bounds for

the MISO and MIMO channels increases as log log Nt.

Similar to Fig. 3, Fig. 6 shows the capacity lower bound versus total overhead (T̄ + μB̄)/L̄

for a MIMO channel. The solid line corresponds to optimized parameters with L̄ = 10, Nt = 9,

N̄r = 2, μ = 1, and ρ = 5 dB. The curves are obtained by numerical optimization. For

the case considered, these results show that the rate achieved with equal portions of training

and feedback is close to the maximum (corresponding to optimized training and feedback).

Allocating the overhead according to the asymptotic results in Theorem 3, i.e., taking μB̄/T̄ =

L̄ log 2/(2μN̄r log Nt), performs marginally better than allocating equal training and feedback.

The total optimized overhead in this case is (T̄ + B̄)/L̄ ≈ 0.2. The performance degrades when

B̄ deviates significantly from T̄ (as shown by the curve corresponding to B̄ = 2T̄ ). (The three

curves shown are not extended to (T̄ + B̄)/L̄ = 1 since the simulation complexity associated

with RVQ increases exponentially with B̄.) Compared with the results for the MISO channel in

Fig. 3, the capacity for the MIMO channel is somewhat more robust with respect to variations

in overhead.

VI. CONCLUSIONS

We have presented bounds on the capacity of both MISO and MIMO block Rayleigh fading

channels with beamforming, assuming limited training and feedback. For a large number of

transmit antennas, we have characterized the optimal amount of training and feedback as a

fraction of the packet duration, assuming linear MMSE estimation of the channel, and an RVQ
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codebook for quantizing the beamforming vector. Our results show that the optimized training

length for both MISO and MIMO channels increases as Nt/ log Nt, which can be interpreted as

the optimal number of transmit antennas to activate. The ratio of optimized feedback to training

overhead tends to one for the MISO channel, but tends to zero as 1/ log Nt for the MIMO channel,

since additional receiver antennas improve robustness with respect to quantization error. The loss

in capacity due to overhead increases as log log Nt for the MIMO channel, and as 2 log log Nt

for the MISO channel.

Although the pilot scheme considered is practical, it is most likely suboptimal. That is, in

the absence of feedback such a pilot-based scheme is strictly suboptimal, although it is nearly

optimal at high SNRs [24]. Computing the capacity of the block fading channel considered

with feedback and no channel knowledge at the receiver and transmitter is an open problem.

Consequently, although the optimal (capacity-maximizing) number of transmit antennas should

still be limited by the coherence time, the growth rate may differ from the L/ log L growth rate

shown here for the pilot scheme.

The model and analysis presented here can be extended in a few different directions. A natural

generalization of the MIMO beamforming model is to allow a general transmit precoding matrix

with rank greater than one. The additional overhead should impose a limit on both the number of

beams and antennas that can effectively be used. Also, the powers allocated to the training and

data portions of the coherence block can be optimized in addition to the fraction of overhead

symbols. Finally, feedback and training overhead becomes especially important in multi-user

MIMO scenarios, such as the cellular downlink. The optimal overhead scaling with coherence

time in those scenarios remains to be studied.
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APPENDIX

A. Proof of Lemma 1

We need to evaluate (21). Letting n = 2B, we first bound

nB

(
n, 1 +

1

Nt − 1

)
=

nΓ(n)Γ
(
1 + 1

Nt−1

)
Γ
(
n + 1 + 1

Nt−1

) (48)

= Γ

(
1 +

1

Nt − 1

)
Γ(n + 2)

(n + 1)Γ
(
n + 1 + 1

Nt−1

) (49)

≥ Γ

(
1 +

1

Nt − 1

)
(n + 1)

− 1
Nt−1 (50)

= Γ

(
1 +

1

Nt − 1

)(
1 +

1

n

)− 1
Nt−1

2
−B̄

(
1+ 1

Nt−1

)
(51)

where we have used B(p, q) = Γ(p)Γ(q)/Γ(p + q), the identity Γ(k + 1) = kΓ(k) for k ∈ N,

and the inequality Γ(k + 1)/Γ(k + x) ≥ k1−x for 0 ≤ x ≤ 1 [34]. Since Γ(x) is convex for

x ∈ [1, 2], for Nt ≥ 2,

Γ

(
1 +

1

Nt − 1

)
≥ Γ(1) +

Γ′(1)

Nt − 1
= 1 − γ

Nt − 1
(52)

where γ = 0.5772 . . . is the Euler constant. Expanding the second factor on the right-hand side

of (51) in a Taylor series gives(
1 +

1

n

)− 1
Nt−1

= 1 − 1

Nt − 1

1

n
+

Nt

2!(Nt − 1)2

1

n2
− Nt(2Nt − 1)

3!(Nt − 1)3

1

n3
+ · · · (53)

≥ 1 − 1

n(Nt − 1)
(54)

since the magnitude of each term in (53) is decreasing. We also expand

(2−B̄)
1

Nt−1 = 1 − 1

Nt − 1
(1 − 2−B̄) − Nt − 2

2!(Nt − 1)2
(1 − 2−B̄)2

− (Nt − 2)(2Nt − 3)

3!(Nt − 1)3
(1 − 2−B̄)3 − · · · (55)

≥ 1 − 1

Nt − 1

[
(1 − 2−B̄) + (1 − 2−B̄)2 + (1 − 2−B̄)3 + · · ·

]
(56)

= 1 − 1

Nt − 1
(2B̄ − 1). (57)
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Substituting (52), (54), and (57) into (51) yields

nB

(
n, 1 +

1

Nt − 1

)

≥ 2−B̄

(
1 − γ

Nt − 1

)(
1 − 1

n(Nt − 1)

)(
1 − 2B̄ − 1

Nt − 1

)
(58)

≥ 2−B̄

[
1 − 1

Nt − 1
(2B̄ − 1 + γ + 2−B)

]
. (59)

The inequality (59) holds for Nt ≥ 2 and B̄ ≥ 0. Therefore

E[ν] = 1 − 2BB

(
2B, 1 +

1

Nt − 1

)
(60)

≤ 1 − 2−B̄ +
1 + (γ − 1)2−B̄ + 2−B̄Nt

Nt − 1
. (61)

To show (23), we derive the following upper bound

nB

(
n, 1 +

1

Nt − 1

)
= Γ

(
1 +

1

Nt − 1

)
Γ(n + 1)

Γ
(
n + 1 + 1

Nt−1

) (62)

≤ Γ

(
1 +

1

Nt − 1

)(
n +

Nt

2(Nt − 1)

)− 1
Nt−1

(63)

= Γ

(
1 +

1

Nt − 1

)(
1 +

Nt

2n(Nt − 1)

)− 1
Nt−1

2
− B̄

Nt−1 2−B̄. (64)

The inequality (63) is shown in [35]. Since every factor in (64) is less than or equal to one, we

conclude that

nB

(
n, 1 +

1

Nt − 1

)
≤ 2−B̄, (65)

and combining with (60) gives the lower bound (23).

B. Proof of Lemma 2

Since log
(
1 + 1

σ2
z
X
)

is concave for X ∈ [0,∞) and

lim
t→∞

1

t
log

(
1 +

1

σ2
z

t

)
= 0, (66)

we can apply the following inequality in [33]

E

[
log

(
1 +

1

σ2
z

X

)]
≥

(
1 − E |X − E[X]|

2E[X]

)
log

(
1 +

1

σ2
z

E[X]

)
. (67)
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Now set X = Aν, where A � ‖ĥ‖2 and ν � |ĥv(ĥ)|2/‖ĥ‖2. Since A and ν are independent,

and using the relation (E |X − E[X]|)2 ≤ var[X], we obtain

E |X − E[X]|
2E[X]

≤
√

var[X]

2E[X]
(68)

=
1

2

√
E[A2]

E2[A]

E[ν2]

E2[ν]
− 1. (69)

Each element in ĥ is i.i.d. with a complex Gaussian distribution. Hence A is Gamma distributed

so that
E[A2]

E2[A]
= 1 +

1

Nt
. (70)

To evaluate E[ν2]/E2[ν] in (69) we first compute

E[(1 − ν)2] =

∫ 1

0

(1 − v)2fν(v) dv (71)

=

∫ 1

0

(1 − v)2
[
n(Nt − 1)

(
1 − (1 − v)Nt−1

)n−1
(1 − v)Nt−2

]
dv (72)

where fν(·) is the pdf for ν, and is given in [16]. Applying the change of variables q = (1−v)Nt−1

gives

E[(1 − ν)2] = n

∫ 1

0

q
2

Nt−1 (1 − q)n−1 dq (73)

= nB

(
n, 1 +

2

Nt − 1

)
. (74)

Therefore

var[ν] = E[ν2] − E2[ν] (75)

= nB

(
n, 1 +

2

Nt − 1

)
− (1 − E[ν])2 (76)

= nB

(
n, 1 +

2

Nt − 1

)
− n2B2

(
n, 1 +

1

Nt − 1

)
. (77)

Applying the inequality in [35], we have

nB

(
n, 1 +

2

Nt − 1

)
= Γ

(
1 +

2

Nt − 1

)
Γ(n + 1)

Γ
(
n + 1 + 2

Nt−1

) (78)

≤ Γ

(
1 +

2

Nt − 1

)(
n +

1

Nt − 1
+

1

2

)− 2
Nt−1

. (79)
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Substituting (79) and (50) into (77) gives

var[ν]

≤ Γ

(
1 +

2

Nt − 1

)(
n +

1

Nt − 1
+

1

2

)− 2
Nt−1

− Γ2

(
1 +

1

Nt − 1

)
(n + 1)

− 2
Nt−1 (80)

= 2
−2B̄

(
1+ 1

Nt−1

)[
Γ

(
1 +

2

Nt − 1

)(
1 +

1

n(Nt − 1)
+

1

2n

)− 2
Nt−1

− Γ2

(
1 +

1

Nt − 1

)(
1 +

1

n

)− 2
Nt−1

]
(81)

≤ 2
−2B̄

(
1+ 1

Nt−1

) [
Γ

(
1 +

2

Nt − 1

)
− Γ2

(
1 +

1

Nt − 1

)(
1 +

1

n

)− 2
Nt−1

]
. (82)

Since the second factor in (64) is less than or equal to one, we have

E[ν] ≥ 1 − Γ

(
1 +

1

Nt − 1

)
2
−B̄

(
1+ 1

Nt−1

)
. (83)

Finally, combining (69), (70), (82), and (83) gives E |X − E[X]| /(2E[X]) ≤ d(Nt) in (27),

which completes the proof.

C. Proof of Theorem 2

We first maximize the upper bound given by

Cu =
D̄

L̄
Cu (84)

=
D̄

L̄
log

(
ρ

1 + ρ−1
T̄ (1 − 2−B̄)Nt

)
+

D̄

L̄
log(1 + r(Nt)) (85)

where

r(Nt) =
(1 + ρ−1)2 − T̄

T̄ (1 − 2−B̄)Nt

+
1 + (γ − 1)2−B̄ + 2−B̄Nt

(Nt − 1)(1 − 2−B̄)
. (86)

The expression for σ2
w in (12) with T̄ ≤ 1 has been used in (85), since we will show that T̄ → 0

as Nt → ∞. We wish to characterize the behavior of the optimal parameters {T̄ o
u , B̄o

u, D̄
o
u} as

Nt → ∞.

The Lagrangian is given by

L = Cu + λ(L̄ − T̄ − μB̄ − D̄) (87)
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where λ is the Lagrangian multiplier. Setting the partial derivatives of L with respect to D̄, T̄ ,

B̄, and λ to zero gives the necessary conditions

log

(
ρ

1 + ρ−1

)
+ log(T̄ ) + log(1 − 2−B̄) + log Nt + log(1 + r(Nt)) − L̄λ = 0 (88)

D̄

T̄
+

(
D̄

1 + r(Nt)

)
∂r(Nt)

∂T̄
− L̄λ = 0 (89)

D̄ log 2

2B̄ − 1
+

(
D̄

1 + r(Nt)

)
∂r(Nt)

∂B̄
− L̄μλ = 0 (90)

L̄ − T̄ − μB̄ − D̄ = 0. (91)

Substituting (89), (91), and the expression for ∂r(Nt)
∂T̄

into (88) gives

T̄ log Nt + T̄ log

(
ρ

1 + ρ−1

)
+ T̄ log(1 − 2−B̄) + T̄ log T̄ + T̄ log(1 + r(Nt))

= (L̄ − T̄ − μB̄)

(
1 − (1 + ρ−1)2

(1 + r(Nt))(1 − 2−B̄)T̄Nt

)
.

(92)

We first observe that (1− 2−B̄o
u)T̄ o

uNt → ∞ as Nt → ∞. Otherwise, it easily verified from (85)

that Cu must be bounded by a constant. However, this is clearly suboptimal, since if B̄ and T̄

are constants, then Cu grows as O(log Nt). This observation implies that r(Nt) → 0.

As Nt → ∞, the right-hand side of (92) converges to L̄−T̄ −μB̄, so that (92) implies T̄ → 0.

As Nt → ∞, (92) therefore implies

T̄ log Nt → L̄ − μB̄. (93)

Combining (89) and (90) gives

B̄ =
1

log 2
log

(
1 +

log 2

μ
T̄

(
1

1 + ξ(Nt)

))
(94)

where

ξ(Nt) =
T̄

1 + r(Nt)

(
∂r(Nt)

∂T̄
− μ

∂r(Nt)

∂B̄

)
. (95)

Since T̄ → 0, and r(Nt) → 0 uniformly over T̄ and B̄ (so that the derivatives in (95) must also

tend to zero), it follows that ξ(Nt) → 0. Hence for large Nt (94) implies that

B̄ =
1

μ
T̄ + O(T̄ 2), (96)
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where we have used the Taylor expansion log(1 + x) = x + O(x2) for small x. Combining (93)

and (96), it follows that

T̄ o
u log Nt → L̄, (97)

B̄o
u log Nt → 1

μ
L̄. (98)

Substituting the optimal parameters in the capacity upper bound (85) gives

Co
u − D̄o

u

L̄
log(ρNt) − D̄o

u

L̄
log T̄ o

u−
D̄o

u

L̄
log(1 − 2−B̄o

u)

= −D̄o
u

L̄
log(1 + ρ−1) +

D̄o
u

L̄
log(1 + r(Nt))

(99)

where Co
u denotes the optimal Cu. Taking Nt → ∞ gives

Co
u − log(ρNt) + 2 log log Nt → log(L̄2 log 2) − 2 − log[μ(1 + ρ−1)]. (100)

Following similar steps to optimize the lower bound (29) gives

T̄ o
l log Nt → L̄ (101)

B̄o
l log Nt → 1

μ
L̄ (102)

(Here we must show that d(Nt) in (27) tends to zero uniformly over all T̄ and B̄.) The optimized

lower bound satisfies

Co
l − log(ρNt)+2 log log Nt

→ log(L̄2 log 2) − 2 − log[μ(1 + ρ−1)] − log(1 + ρ).
(103)

Since the optimized bounds grow with Nt at the same rate, the capacity must also grow at that

rate. Hence we conclude that the parameters that maximize the capacity exhibit the asymptotic

behavior stated in the theorem.

D. Proof of Theorem 3

Similar to the proof of Theorem 2 in Appendix C, we first optimize the upper bound given

by

Cu =
D̄

L̄
log

(
ρ

1 + ρ−1
T̄ γrvqNt

)
+

D̄

L̄
log(1 + s(Nt)) (104)

where

s(Nt) =
(1 + ρ−1)2 + (1 + ρ−1)κ(Nt) − T̄

T̄ γrvqNt

, (105)
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and we have substituted σ2
w = 1 − T̄ /(1 + ρ−1), corresponding to T̄ ≤ 1, since we will show

that the optimal normalized training length T̄ o
u → 0 as Nt → ∞.

The Lagrangian for this optimization problem is given by

L = Cu + λ(L̄ − T̄ − μB̄ − D̄) (106)

where λ is the Lagrange multiplier. The first-order necessary conditions are

log

(
ρ

1 + ρ−1

)
+ log(T̄ ) + log(γrvq) + log Nt + log(1 + s(Nt)) − L̄λ = 0 (107)

D̄

T̄
+

(
D̄

1 + s(Nt)

)
∂s(Nt)

∂T̄
− L̄λ = 0 (108)(

D̄

γrvq

)
∂γrvq

∂B̄
+

(
D̄

1 + s(Nt)

)
∂s(Nt)

∂B̄
− L̄μλ = 0 (109)

L̄ − T̄ − μB̄ − D̄ = 0. (110)

Substituting (108) and (110) into (107) gives

T̄ log Nt + T̄ log

(
ρ

1 + ρ−1

)
+ T̄ log(γrvq) + T̄ log(T̄ ) + T̄ log(1 + s(Nt))

= (L̄ − T̄ − μB̄)

(
1 +

(
T̄

1 + s(Nt)

)
∂s(Nt)

∂T̄

)
.

(111)

Using an argument analogous to that used to show that (1 − 2−B̄o
u)T̄ o

uNt → ∞ as Nt → ∞ in

Appendix C, we can show that as Nt → ∞, T̄ γrvqNt → ∞, which implies that s(Nt) → 0

uniformly in T̄ and B̄, so that
(

T̄
1+s(Nt)

)
∂s(Nt)

∂T̄
→ 0. Taking Nt → ∞ therefore gives

T̄ o
u log Nt − L̄ → 0, (112)

assuming that B̄o
u → 0, which will be proved next.

Substituting (108) into (109) to eliminate λ and rearranging gives

γrvq

(
∂γrvq

∂B̄

)−1

=
T̄

μ

[
1 +

T̄

1 + s(Nt)

(
∂s(Nt)

∂T̄
− 1

μ

∂s(Nt)

∂B̄

)]−1

. (113)

Since T̄ → 0 and s(Nt) → 0,

γrvq

(
∂γrvq

∂B̄

)−1

−→ 0. (114)

For 0 ≤ B̄ ≤ B̄∗ it is shown in [14] (Theorem 3) that γrvq satisfies (after some rearrangement)(
−γrvq

N̄r

)
e−γrvq/N̄r = −1

e
2−B̄/N̄r (115)
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where B̄∗ is given by

B̄∗ =
1

log 2

(
N̄r log(

√
N̄r) − N̄r log(1 +

√
N̄r) +

√
N̄r

)
. (116)

We can therefore write −γrvq/N̄r = W (−1
e
2−B̄/N̄r), where W (x) is the Lambert-W function.

It is straightforward to show that

γrvq

(
∂γrvq

∂B̄

)−1

=

(
∂[log γrvq]

∂B̄

)−1

=
γrvq − N̄r

log 2
. (117)

Hence from (114), γrvq/N̄r → 1 as Nt → ∞, and substituting in (115) implies that B̄ → 0.

To determine the first-order rate at which B̄ → 0, we combine (113) and (117) to write

γrvq

N̄r

− 1 =
log 2

μN̄r

T̄ + O(T̄ 2) (118)

The behavior of γrvq for small B̄ (equivalently, γrvq/N̄r close to one) can be determined by

expanding W (x) around x = −e−1. Such an expansion is given in [36], which we rewrite as

γrvq = N̄r

(
1 +

√
ζB̄ +

1

3
ζB̄ +

11

72
ζB̄

√
ζB̄ + O(ζ

5/2

B̄
)

)
(119)

where ζB̄ = 2(1 − 2−B̄/N̄r) = (2 log 2)(B̄/N̄r) + O(B̄2) for small B̄. Hence we have

γrvq

N̄r

− 1 =
√

ζB̄ + O(ζB̄) =

√
2 log 2

N̄r

√
B̄ + O(B̄). (120)

Combining this with (118) gives

√
B̄ =

1

μ

√
log 2

2N̄r

T̄ + O(T̄ 2) (121)

and substituting for T̄ from (112), we conclude that the feedback overhead that maximizes the

upper bound on achievable rate satisfies

B̄o
u =

L̄2 log 2

2μ2N̄r

1

log2 Nt

+ O

(
1

log4 Nt

)
(122)

Substituting for the optimized T̄ o
u and B̄o

u in Cu gives

Co
u − log(ρNt) + log log Nt −→ log

(
ρL̄N̄r

e(ρ + 1)

)
. (123)

We can apply the same techniques to the lower bound on achievable rate to determine the

behavior of the optimal parameters. (Here we must show that c(Nt) in (40) tends to zero

uniformly over all T̄ and B̄.)

May 22, 2010 DRAFT



25

The training and feedback overhead that maximize the lower bound on achievable rate satisfy

T̄ o
l log Nt −→ L̄ (124)

B̄o
l log2 Nt −→ L̄2 log 2

2μ2N̄r

(125)

and substituting into the expression for C o
l gives

Co
l − log(ρNt) + log log Nt −→ log

(
ρL̄N̄r

e(ρ + 1)

)
− log(1 + ρ). (126)

Since the lower and upper bounds grow at the same rate, this establishes the theorem.

REFERENCES
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Fig. 1. The capacity bounds in Theorem 1 (bits/channel use) versus number of transmit antennas.
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Fig. 5. Achievable rate for MIMO channel versus number of transmit antennas Nt with different assumptions about channel
knowledge at the receiver and transmitter. Also shown is the optimized capacity lower bound for the corresponding MISO
channel
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