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Abstract— We examine the capacity of beamforming over a
block Rayleigh fading Multi-Input/Multi-Output (MIMO) chan-
nel with finite training for channel estimation and limited
feedback. A fixed-length packet is assumed, which is spanned
by T training symbols, B feedback bits, and the data symbols.
The training symbols are used to obtain a Minimum Mean
Squared Error (MMSE) estimate of the channel matrix. Given
this estimate, the receiver selects a transmit beamforming vector
from a codebook containing2B i.i.d. random vectors, and relays
the correspondingB-bit index back to the transmitter. We derive
bounds on the capacity. For a large number of transmit antennas
Nt, the optimal T , which maximizes the capacity, increases as
Nt/ log Nt while the optimal B increases asNt/ log2 Nt.

I. I NTRODUCTION

Adding multiple antennas at the transmitter and receiver
creates a Multi-Input/Multi-Output (MIMO) channel whose
capacity is increased substantially over a Single-Input/Single-
Output channel [1], [2]. The gain in capacity depends on the
number of antennas and also whether either the transmitter or
receiver is able to track the channel. In practice, the receiver
estimates channel coefficients from a known training sequence.
References [3], [4] studied the effect of training on the channel
capacity and how much training is needed to achieve a target
rate. In some situations, the transmitter may be able to obtain
channel information from the receiver via a low-rate feedback
channel. Several feedback schemes have been proposed and
analyzed recently [5]–[13]. Here we study the capacity of
beamforming for a MIMO channel with limited feedbackand
training. A Multi-Input/Single-Output (MISO) channel was
considered in [14].

We consider ani.i.d. block Rayleigh fading channel with
Nt transmit andNr receive antennas. TheNtNr channel
parameters are stationary within each block, and are indepen-
dent from block to block. The block size is assumed to be
constant, and the transmitted codewords span many blocks,
so that the maximum achievable rate is the ergodic capacity.
Each coherence block containsT training symbols andD data
symbols. Furthermore, we assume that after transmission of
the training symbols, the transmitter waits for the receiver
to relay B bits over a feedback channel, which specify a
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particular beamforming vector. This delay, in addition to the
T training symbols, is counted as part of the packet overhead.

We assume that the receiver computes a Minimum Mean
Squared Error (MMSE) estimate of the channel, based on
the training symbols, and uses the noisy channel estimate
to choose a transmit beamforming vector. ARandom Vector
Quantization (RVQ) scheme is assumed [15] in which the
beamformer is selected from a codebook consisting of2B

random vectors, which are independent and isotropically dis-
tributed, and knowna priori at the transmitter and receiver.
The associated codebook index is relayed usingB bits via
a noiseless feedback channel to the transmitter. The capacity
of this scheme with perfect channel estimation is analyzed in
[10], [11]. It is shown in [10], [11] that the RVQ codebook is
optimal (i.e., maximizes the capacity) in the large system limit
in which Nt, Nr, andB tend to infinity with fixed feedback
bits per degree of freedom̄B = B/Nt andN̄r = Nr/Nt. RVQ
has been observed to give excellent performance for systems
with small Nt [16].

The capacity with MMSE channel estimates at the receiver
(with or without limited feedback) is unknown. We derive
upper and lower bounds on the capacity with RVQ and limited
training, which are implicit functions of the number of training
symbolsT and feedback bitsB. Given a fixed block size,
or packet lengthL, we then optimize the capacity bounds
over B and T . Namely, smallT leads to a poor channel
estimate, which decreases capacity, whereas largeT leads to
an accurate channel estimate, but leaves few symbols in the
packet for transmitting the message. This tradeoff has been
studied in [3], [17] for MIMO channels without feedback.
Here there is also an optimal amount of feedbackB, which
increases with the training intervalT . That is, more feedback
is needed to quantize more accurate channel estimates. A
similar optimization problem was studied for MISO channel
in [14]. However, those results for MISO channel can not be
generalized to MIMO channel.

We show that the optimalT/Nt andB/Nt, which maximize
the capacity tend to zero at the rate of1/ log(Nt) and
1/ log2(Nt), respectively asL → ∞ with fixed L/Nt. For
large Nt, the packet overhead devoted to feedback should
be less than that devoted to training and the ratio between
the optimal feedback and training lengths tends to zero as



1/ log(Nt). This is in contrast to the results for MISO channel
in which the ratio between the optimal feedback and training
lengths approximately equals one for largeNt [14]. The
difference is due to the fact that the amount of feedback
required to achieve a target rate in a MISO channel is less
than that in a MIMO channel.

II. SYSTEM MODEL

We consider a point-to-pointi.i.d. block fading MIMO
channel withNt transmit antennas andNr receive antennas.
We assume a rich scattering environment in which the channel
gains across transmit antennas are independent and Rayleigh
distributed. Theith Nr×1 received vector of a particular block
is given by

r(i) = Hvb(i) + n(i) for 1 ≤ i ≤ D (1)

whereH is anNr × Nt channel matrix whose elements are
independent, complex Gaussian random variables with zero
mean and unit variance,v is anNt×1 unit-norm beamforming
vector, b is the transmitted symbol with unit variance,n is
additive white Gaussian noise with covarianceσ2

nI, andD is
the number of data symbols in a block.

In prior work [10], [11], we have analyzed the channel
capacity with perfect channel knowledge at the receiver, but
with limited channel knowledge at the transmitter. Specifically,
a quantized beamforming vector is relayed from the receiver
to the transmitter, given by

vH = arg max
vj∈V

{

log(1 + ρ‖Hvj‖
2)

∣

∣ H
}

(2)

whereρ = 1/σ2
n is a background signal-to-noise ratio (SNR),

andV = {v1, . . . ,v2B} is the quantization codebook, which
is known at both the transmitter and receivera priori. The
(uncoded) index corresponding to the best beamforming vector
(i.e., which maximizes the achievable rate) is relayed to
the transmitter via an error-free feedback link. The capacity
depends on the beamforming codebookV andB. As B → ∞,
the vH that maximizes the capacity is the eigenvector of
H

†
H, which corresponds to the maximum eigenvalue.

We have shown in [10], [11] that RVQ, in which the code-
book vectors are independent and isotropically distributed, is
optimal (i.e. maximizes capacity) in the large system limit
in which (B,Nt, Nr) → ∞ with fixed normalized feedback
B̄ = B/Nt and N̄r = Nr/Nt. The resulting capacity was
shown to grow aslog(ρNt). Although, strictly speaking, RVQ
is suboptimal for a finite-size system, numerical results show
that it gives excellent performance [16].

In addition to limited channel information at the transmitter,
here we also account for channel estimation error at the
receiver. LettingĤ be the estimated channel matrix, we have

H = Ĥ + w (3)

where w is the error matrix whose elements arei.i.d. with
zero mean and varianceσ2

w. Here we assume that the receiver
computes the MMSE estimate ofH. As a result,Ĥ andw are
independent and̂H has zero mean and covariance(1−σ2

w)I.

The receiver then selectsv
Ĥ

, assuming thatĤ is the actual
channel, i.e.,

v
Ĥ

= arg max
vj∈V

{

log(1 + ρ‖Ĥ†
vj‖

2)
∣

∣

∣
Ĥ

}

. (4)

The quality of the channel estimate depends on the number of
training symbolsT , and so does the capacity.

In what follows, we assume that the forward and feedback
links are time-division multiplexed, and each block consists
of T training symbols,B feedback bits, andD data symbols.
Given that the size of each block isL symbols, we have the
constraint

L = T + µB + D (5)

whereµ is a conversion factor, which relates bits to symbols.
We would like to maximize the capacity of beamforming,
which is the maximum mutual information betweenb andr,

max
T,B

{C = E[max
pb

I(r; b|Ĥ ,v
Ĥ

)]} (6)

subject to (5), wherepb is the probability density function
(pdf) for the transmitted symbolb.

III. C APACITY OPTIMIZATION

Determining the ergodic capacity of RVQ beamforming
with channel estimation in (6) appears to be intractable, so
instead we derive upper and lower bounds, which are functions
of D, B, and T . Similar to [14], conditioning on the actual
channel matrix, in addition to the estimate, gives the upper
bound

C ≤ E[max
pb

I(r; b|Ĥ ,v
Ĥ

,H)] (7)

= E[log(1 + ρ‖Hv
Ĥ
‖2)] (8)

≤ log(1 + ρE[‖Hv
Ĥ
‖2]) (9)

where we use the fact that the maximizing pdf in (7) is
Gaussian, and apply Jensen’s inequality (9). Substituting(3)
into the expectation in (9) gives

E[‖Hv
Ĥ
‖2] = σ2

w + E[η] (10)

where
η , v

†

Ĥ
Ĥ

†
Ĥv

Ĥ
(11)

and we use that fact thatv
Ĥ

andw are independent. Substi-
tuting (10) into (9) gives the capacity upper bound

C ≤ Cu = log(1 + ρσ2
w + ρE[η]). (12)

Similar to [14], [18], the capacity lower bound can be
derived by assuming that the sum of estimation error and
AWGN noise is Gaussian. Thus,

C ≥ E

[

log

(

1 +
1

σ2
w + σ2

n

η

)]

(13)

≥ Cl = (1 − cNt
) log

(

1 +
ρ

1 + ρσ2
w

E[η]

)

(14)

where
cNt

,
ση

2E[η]
. (15)



andση is the standard deviation forη. Eq. (14) is obtained by
applying the inequality derived in [19]. We note that both the
upper and lower bounds are functions ofσ2

w andE[η].
To estimate the channel matrix, we compute the MMSE

estimate from training symbols. Reference [3] shows that using
the set of beamforming vectors, which achieves the Welch
bound, for training, minimizes the mean square error. The
variance of the estimation error is given by [3]

σ2
w =

{

1 − T̄
1+ρ−1 , T̄ < 1

1
1+ρT̄

, T̄ ≥ 1
. (16)

where the normalized training length̄T = T/Nt.
To evaluate and maximize both bounds, we need to evaluate

E[η], which is given by

E[η] = E
Ĥ

EV [ max
1≤j≤2B

{v†
jĤ

†
Ĥvj}|Ĥ ]. (17)

Since the RVQ beamforming vectorsvj ’s, are i.i.d., the
corresponding received powersv†

jĤ
†
Ĥvj , j = 1, . . . , 2B ,

are also i.i.d.. However, the pdf forv†
jĤ

†
Ĥvj for given

Ĥ is difficult to obtain [20]. As a result, computingE[η]
analytically for anyNt, Nr andB is not tractable. Maximizing
the capacity bounds over training and feedback lengths for a
finite-size system therefore remains an open research problem.
This motivates the asymptotic analysis in the next section.
In Section IV, we show Monte Carlo simulation results for
specific set of parameters.

A. Asymptotic Analysis

As Nt → ∞ with fixed N̄r = Nr/Nt and normalized
feedback bitsB̄ = B/Nt,

1

Nt

η −→ (1 − σ2
w)γ∞

rvq (18)

almost surely [21], where the asymptotic RVQ received power
γ∞
rvq is given by the following equations [11]. For0 ≤ B̄ ≤

B̄∗, γ∞
rvq satisfies

(

γ∞
rvq

)N̄r
e−γ∞

rvq = 2−B̄

(

N̄r

e

)N̄r

(19)

and for B̄ ≥ B̄∗,

γ∞
rvq = (1 +

√

N̄r)
2 − exp

{1

2
N̄r log(N̄r) − (N̄r − 1)

× log(1 +
√

N̄r) +
√

N̄r − B̄ log(2)
}

(20)

where

B̄∗ =
1

log(2)

(

N̄r log(
√

N̄r) − N̄r log(1 +
√

N̄r) +
√

N̄r

)

.

(21)
We note thatγ∞

rvq is a function of onlyB̄ and N̄r. The limit
in (18) implies that

E[η] = (1 − σ2
w)γ∞

rvqNt + κNt
(22)

whereκNt
/Nt → 0 asNt → ∞. DeterminingκNt

explicitly is
difficult and is an open problem. Substituting (22) and (16) into
(12) and (14) gives the upper boundCu and the lower bound

Cl as functions of̄T andB̄. With D transmitted symbols in an
L-symbol packet, the effective capacityC = (D̄/L̄)C where
the normalized data symbols̄D = D/Nt and the normalized
packet length̄L = L/Nt.

We would like to maximize the associated bounds

max
T̄ ,B̄,D̄

Cl =
D̄

L̄
Cl, (23)

max
T̄ ,B̄,D̄

Cu =
D̄

L̄
Cu, (24)

subject to T̄ + µB̄ + D̄ = L̄. (25)

The solutions to these optimization problems lead to the fol-
lowing Theorem, which characterizes the asymptotic behavior
of the actual capacityC.

Theorem 1: Let {T̄ o, B̄o, D̄o} = arg max{T̄ ,B̄,D̄} C subject
to (25) andCo be the maximized capacity. As(Nt, Nr) → ∞
with fixed N̄r = Nr/Nt,

T̄ o log(Nt) −→ L̄, (26)

B̄o log2(Nt) −→
L̄2 log(2)

2µ2N̄r

, (27)

D̄o

1 − 1
log(Nt)

−
(

L̄ log(2)
2N̄rµ

)

1
log2(Nt)

−→ L̄ (28)

and the capacity satisfies

Co − log(ρNt) + log(log(Nt)) → ξ (29)

where
ξ∗ − log(1 + ρ) ≤ ξ ≤ ξ∗ (30)

andξ∗ = log(ρL̄N̄r) − log(ρ + 1) − 1.
As Nt tends to infinity, the capacity with limited training

and feedback increases aslog(ρNt)−log(log(Nt)). Compared
with the MISO channel for largeNt [14], the optimized rate
for the MIMO channel is larger bylog(log(Nt)). However, the
optimal training length for both MISO and MIMO channels
increases to infinity at the same rate, which isNt/ log(Nt).
The optimal feedback lengths for MIMO channel and MISO
channel [14] increase to infinity at the rates ofNt/ log2 Nt

andNt/ log Nt, respectively.
¿From Theorem 1, the ratio between the optimal feedback

and training lengths for MIMO channel tends to zero

µB̄o

T̄ o
≍

L̄ log(2)

2µN̄r log(Nt)
−→ 0 (31)

wherea(Nt) ≍ b(Nt) is equivalent toa(Nt)/b(Nt) → 1 as
Nt → ∞. This differs from the result for the MISO channel in
which µB̄o/T̄ o → 1. The difference can be attributed to the
fact that the amount of normalized feedback needed for the
MIMO channel is less than that needed for the MISO channel
to achieve a desired asymptotic rate asNt increases. Eq. (31)
implies that the fraction of the packet dedicated to training
should be more than that dedicated to feedback asNt and
Nr/Nt increase.
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Fig. 1. Capacity bounds (bits/channel use) (12) and (14) versus number of
transmit antennas withσ2

w = 0.1 and0.25.

IV. N UMERICAL RESULTS

Fig. 1 shows the upper and lower bounds (12) and (14)
with σ2

w = 0.1 and0.25, B̄ = 1, N̄r = 1, andρ = 5 dB. To
obtain cNt

and E[η] in (12) and (14), we use Monte Carlo
simulations. Both bounds on the capacity with beamforming
grow logarithmically withNt as expected. The gap between
the upper and lower bounds narrows as the variance for
estimation errorσ2

w decreases. Withσ2
w = 0, the upper bound

is equal to the lower bound, and is the actual capacity. We note
that the gap between the bounds also decreases with larger
B̄. Since RVQ requires exhaustive search, and the number of
entries in the codebook grows exponentially with the number
of antennas, simulation results are not shown forNt > 12.

We simulate the capacity lower bound with a range of possi-
ble values ofB andT and selectBo

l andT o
l , which maximize

the lower bound. Fig. 2 shows{Bo
l , T o

l ,Do
l } normalized by

the packet lengthL versusNt for N̄r = 2, L̄ = 50, µ = 1, and
ρ = 5 dB. As predicted by Theorem 1, both the optimalT̄ and
B̄ decrease to zero, and̄D increases tōL as Nt → ∞. The
associated lower bound is shown in Fig. 3 with a dashed line.
We also compare the optimized bound to a lower bound with
a heuristic choice of parameters (B̄ = 1 and T̄ = 1.5) shown
by a dashed-dot line. ForNt = 3, the bound with optimal
parameters is approximately 10% greater than that with the
heuristic choice. Also shown in Fig. 3 is the capacity with
perfect channel knowledge at the transmitter and receiver.The
performance with limited feedback and training is substantially
less that with perfect channel knowledge. ForNt = 3, the
capacity with perfect channel knowledge is about 40% larger
than the rate with optimized feedback and training lengths.
The solid curve with dots is the capacity with perfect channel
estimation andBo

l feedback bits. Here we see a substantial
gain relative to the solid line, since with perfect channel
knowledge the receiver does not require training overhead.
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Fig. 3. Achievable rate versus number of transmit antennasNt with different
assumptions about channel knowledge at the receiver and transmitter. Also
shown is the optimized capacity lower bound for MISO channel [14]

We also include in the figure the capacity lower bound for
MISO channel with optimized training and feedback lengths
[14], which is shown to be substantially lower than that for
MIMO channel with N̄r = 2. As N̄r increases, we expect
the gap between the optimized lower bounds for MISO and
MIMO channels to increase.

Fig. 4 shows the capacity lower bound versus total overhead
(T̄ +µB̄)/L̄. The capacity is zero when̄T + B̄ = 0, since the
estimate is uncorrelated with the channel, and whenT̄ + B̄ =
L̄, since D̄ = 0. The solid line corresponds to optimized
parameters with̄L = 10, Nt = 9, N̄r = 2, µ = 1, andρ = 5
dB. Different curves correspond to different ratios between T̄
andB̄. With equal amounts of training and feedback, the rate
is almost equal to that with optimized parameters with the peak



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(T + µB)/L

C
ap

ac
ity

 lo
w

er
 b

ou
nd

 (
bi

ts
 / 

ch
an

ne
l u

se
)

N
t
 = 9; N

r
/N

t
 = 2; L/N

t
 = 10; ρ = 5 dB; µ = 1

B = [L*log(2)/(2*N
r
*log(N

t
)]*T

B = T
B = 2*T
Bo

l
/N

t
, To

l
/N

t

Fig. 4. Lower bound on capacity versus normalized training and feedback
(T̄ + µB̄)/L̄.

achieved when(T̄ +B̄)/L̄ = 0.2. Allocating overhead accord-
ing to Theorem 1, i.e.,µB̄/T̄ = L̄ log(2)/(2µN̄r log(Nt))
performs marginally better than allocating equal trainingand
feedback. AsNt increases, we expect the gap between the two
overhead allocations to increase. The performance degrades
when B̄ deviates significantly fromT̄ (e.g., B̄ = 2T̄ ). The
three curves shown are not extended to(T̄ + B̄)/L̄ = 1 since
simulation complexity increases exponentially with̄B due to
RVQ’s exhaustive search.

V. CONCLUSION

We have presented bounds on the capacity of a MIMO
block Rayleigh fading channel with beamforming, assuming
limited training and feedback. For a large number of trans-
mit antennas, we have characterized the optimal amount of
training and feedback as a fraction of the packet duration,
assuming linear MMSE estimation of the channel, and an
RVQ codebook for quantizing the beamforming vector. Our
results show that when optimized, the fractions of the packet
devoted to training and feedback tend to zero at the rates of
1/ log Nt and 1/ log2 Nt, respectively, asNt → ∞. This is
in contrast to the MISO channel in which both training and
feedback lengths tend to zero at the rate of1/ log Nt [14].
We showed that allocating packet overhead according to the
ratio µB̄/T̄ = L̄ log(2)/(2µN̄r log(Nt)), which is obtained
by the asymptotic analysis, can achieve close to the optimal
performance for a finite-size system.

Although the pilot-based scheme considered is practical, it
is most likely suboptimal. Namely, in the absence of feedback
such a pilot-based scheme is strictly suboptimal, although
it is nearly optimal at high SNRs [3]. With feedback the
capacity of the block fading MIMO channel considered (i.e.,
no channel knowledge at the receiver and transmitter) is
unknown. Extensions of the model presented here include
allocating different powers for the training and data portions.
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