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Abstract—We examine the capacity of beamforming over a particular beamforming vector. This delay, in addition e t
block Rayleigh fading Multi-Input/Multi-Output (MIMO) chan- T training symbols, is counted as part of the packet overhead.
nel with finitg training for channel estimation .andl limited We assume that the receiver computes a Minimum Mean
feedback. A fixed-length packet is assumed, which is spanned .
by T training symbols, B feedback bits, and the data symbols. Square_d_ Error (MMSE) estimate of thg channel, base?' on
The training symbols are used to obtain a Minimum Mean the training symbols, and uses the noisy channel estimate
Squared Error (MMSE) estimate of the channel matrix. Given to choose a transmit beamforming vector.R&ndom Vector
this estimate, the receiver selects a transmit beamforming veato Quantization (RVQ) scheme is assumed [15] in which the
from a codebook containing2” i.i.d. random vectors, and relays peamformer is selected from a codebook consisting/f
the corresponding B-bit index back to the transmitter. We derive . . . . .
bounds on the capacity. For a large number of transmit antennas ra_mdom vectors, which grg independent and 'SOIrOplca‘#y di
N, the optimal T, which maximizes the capacity, increases as tributed, and knowra priori at the transmitter and receiver.
N/ log N; while the optimal B increases asN;/log® N;. The associated codebook index is relayed usihdits via
a noiseless feedback channel to the transmitter. The dgpaci

|. INTRODUCTION of this scheme with perfect channel estimation is analyped i

Adding multiple antennas at the transmitter and receivgr0], [11]. It is shown in [10], [11] that the RVQ codebook is
creates a Multi-Input/Multi-Output (MIMO) channel whosepptimal (i.e., maximizes the capacity) in the large systinit |
capacity is increased substantially over a Single-Inpo¢!8- in which N;, N,, and B tend to infinity with fixed feedback
Output channel [1], [2]. The gain in capacity depends on thits per degree of freedod = B/N; andN, = N,./N;. RVQ
number of antennas and also whether either the transmitteh@s been observed to give excellent performance for systems
receiver is able to track the channel. In practice, the vecei with small N, [16].
estimates channel coefficients from a known training secgilen  The capacity with MMSE channel estimates at the receiver
References [3], [4] studied the effect of training on thersie  (with or without limited feedback) is unknown. We derive
capacity and how much training is needed to achieve a targper and lower bounds on the capacity with RVQ and limited
rate. In some situations, the transmitter may be able tarobtgaining, which are implicit functions of the number of taig
channel information from the receiver via a low-rate feaba symbols 7 and feedback bits3. Given a fixed block size,
channel. Several feedback schemes have been proposedcngacket lengthZ, we then optimize the capacity bounds
analyzed recently [5]-[13]. Here we study the capacity @ver B and 7. Namely, smallT" leads to a poor channel
beamforming for a MIMO channel with limited feedbaakd estimate, which decreases capacity, whereas l@r¢gads to
training. A Multi-Input/Single-Output (MISO) channel wasan accurate channel estimate, but leaves few symbols in the
considered in [14]. packet for transmitting the message. This tradeoff has been

We consider ari.i.d. block Rayleigh fading channel with studied in [3], [17] for MIMO channels without feedback.
N; transmit and N, receive antennas. Thé&; N, channel Here there is also an optimal amount of feedbd@kwhich
parameters are stationary within each block, and are imdepghcreases with the training intervdl. That is, more feedback
dent from block to block. The block size is assumed to g needed to quantize more accurate channel estimates. A
constant, and the transmitted codewords span many blocksnilar optimization problem was studied for MISO channel
so that the maximum achievable rate is the ergodic capacity.[14]. However, those results for MISO channel can not be
Each coherence block contaifigtraining symbols and data generalized to MIMO channel.
symbols. Furthermore, we assume that after transmission ofp/e show that the optimal /N, and B/N;, which maximize
the training symbols, the transmitter waits for the receivéhe capacity tend to zero at the rate of/log(N;) and
to relay B bits over a feedback channel, which specify a/log?(N,), respectively as, — oo with fixed L/N,. For

) ) ) large V;, the packet overhead devoted to feedback should
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CCR-0310809. the optimal feedback and training lengths tends to zero as



1/1og(Ny). This is in contrast to the results for MISO channeThe receiver then selects;, assuming thaf is the actual
in which the ratio between the optimal feedback and trainirdhannel, i.e.,

lengths approximately equals one for largé [14]. The i ] g

difference is due to the fact that the amount of feedback Ya = afgfgg’;{log(l + ol H o )‘ H}' )
required to achieve a target rate in a MISO channel is |

e . .
than that in a MIMO channel. ’?ﬁe quality of the channel estimate depends on the number of

training symbolsT’, and so does the capacity.
Il. SYSTEM MODEL In what follows, we assume that the forward and feedback
We consider a point-to-point.i.d. block fading MIMO links are time-division multiplexed, and each block cotssis

channel with/N, transmit antennas and¥, receive antennas, ©f ' training symbols B feedback bits, and> data symbols.

We assume a rich scattering environment in which the chan@Ven that the size of each block Is symbols, we have the
gains across transmit antennas are independent and Rayl&@;ns”a'nt

distributed. Theth N, x 1 received vector of a particular block L=T+puB+D ®)
is given by wherey is a conversion factor, which relates bits to symbols.
(i) = Hob(i) + n(i) for 1<i<D 1) We would like to maximize the capacity of beamforming,

which is the maximum mutual information betwegmnd r,
where H is an N,. x N, channel matrix whose elements are .
independent, complex Gaussian random variables with zero T {C= E[H},%XI(“MH’”,{I)]} (6)
mean and unit variance,is anV; x 1 unit-norm beamforming
vector, b is the transmitted symbol with unit variance, is
additive white Gaussian noise with covariancgl, and D is
the number of data symbols in a block. I11. CAPACITY OPTIMIZATION

In prior work [10], [11], we have analyzed the channel petermining the ergodic capacity of RVQ beamforming
capacity with perfect channel knowledge at the receiver, By, channel estimation in (6) appears to be intractable, so

with limited channel knowledge at the transmitter. Specifically, taad we derive upper and lower bounds, which are fungtion
a quantized beamforming vector is relayed from the receiVgf p B and 7. Similar to [14] conditioni'ng on the actual

to the transmitter, given by channel matrix, in addition to the estimate, gives the upper

subject to (5), wherey, is the probability density function
(pdf) for the transmitted symbdil.

VH = argmm‘g{log(l+pHH'ij2)’H} ) bound
v;E ~
, : . : C < ElmaxI(r;b|H,vg, H)] (7
wherep = 1/02 is a background signal-to-noise ratio (SNR), Py
andV = {vy,...,vy5} is the quantization codebook, which = Ellog(1 + p||Hvg|?)] (8)
is known at both the transmitter and receigempriori. The < log(1 + pE[|[Hvg %)) 9)

(uncoded) index corresponding to the best beamformingvect o ) )
(i.e., which maximizes the achievable rate) is relayed here we use the fact that the maximizing pdf in (7) is
the transmitter via an error-free feedback link. The capaciGaussian, and apply Jensen’s inequality (9). Substitut#)g
depends on the beamforming codebdoknd B. As B — oo, into the expectation in (9) gives
the vy th_at maximizes the capamty_ is the_elgenvector of E[HHUﬁ||2] = o2 + B[y (10)
H'H, which corresponds to the maximum eigenvalue.

We have shown in [10], [11] that RVQ, in which the codewhere o
book vectors are independent and isotropically distrithuie n= quHTHvH (11)
optimal (i.e. maximizes capacity) in the large system limit : .
inpwhich((B Ni, Np) — 00 \r/)vith ?‘/iZ(ed normal?zed )lfeedback and we use that fact that; andw are independent. Substi-
B = B/N, and N, = N,/N,. The resulting capacity Wastutlng (10) into (9) gives the capacity upper bound
;hown to grow aﬂiog('p]'Vt). Although, strictly speaking, RVQ C < C, =log(1 + po2 + pE[n)). (12)
is suboptimal for a finite-size system, numerical resulash o )
that it gives excellent performance [16]. Similar to [14], [18], the capacity lower bound can be

In addition to limited channel information at the transemitt d€rived by assuming that the sum of estimation error and
here we also account for channel estimation error at tl’%.(vGN noise is Gaussian. Thus,

receiver. LettingH be the estimated channel matrix, we have 1
H=-H+w 3) Tw ¥ n
_ p
where w is the error matrix whose elements ared. with 2 Cr=(1-cn,)log (1 1T pagﬂE[”]) (14)
zero mean and variane€,. Here we assume that the receive\svhere
computes the MMSE estimate & . As a result,H andw are A Oy (15)
CN, =

independent andl has zero mean and covariande— o2)1I.



ando,, is the standard deviation for. Eq. (14) is obtained by C; as functions ofl’ and B. With D transmitted symbols in an

applying the inequality derived in [19]. We note that botk thL-symbol packet, the effective capacify= (D/L)C where

upper and lower bounds are functionsagf and E[n]. the normalized data symbols = D/N; and the normalized
To estimate the channel matrix, we compute the MMSgacket lengthl, = L/N;.

estimate from training symbols. Reference [3] shows thiigus  We would like to maximize the associated bounds

the set of beamforming vectors, which achieves the Welch D

bound, for training, minimizes the mean square error. The max C = =Cj, (23)
variance of the estimation error is given by [3] T.5.D L
D

T T Cu = Tcua 24

7= { e 2 (16) r5p L o

1pT , Tz21 subjectto T+ uB+ D = L. (25)

where the normalized t_ra!nlng lengih = T'/N;. The solutions to these optimization problems lead to the fol
To evaluate and maximize both bounds, we need to evalugig;in Theorem, which characterizes the asymptotic beftavi
Eln], which is given by of the actual capacityC.
E[n) = Eg Ey| max {v}ﬁITﬁijﬁI]. Theorem 1. Let{T°, B",_D_"} = argmaxs g py C subject
1<j<2f to (25) andC® be the maximized capacity. AsV;, N,.) — oo
Since the RVQ beamforming vectors;'s, are i.i.d., the with fixed N, = N, /N,
corresponding received powet§ H' Hv;, j = 1,...,2P,

7

are alsoi.i.d.. However, the pdf forvijTISIvj for given T%log(Ny) — L’,Z (26)

H s difficult to obtain [20]. As a result, computing’[n) B°log?(Ny) — M7 (27)

analytically for anyN,, N,. and B is not tractable. Maximizing B 24* Ny

the capacity bounds over training and feedback lengths for a D° 1 (28)

finite-size system therefore remains an open researchgmmobl 1— L (Elqg(2)) B!

This motivates the asymptotic analysis in the next section. log(N¢) 2Nn ) TogZ(Ne)

In Section IV, we show Monte Carlo simulation results foand the capacity satisfies

specific set of parameters. 3

A Asymptotic Analysis C? —log(pNy) + log(log(NVy)) — & (29)
As N; — oo with fixed N, = N,/N; and normalized where

feedback bitsB = B/Ny, F—log(l+p) <E<& (30)

(18)

1
N 0= T2 ) Vovq

and¢* = log(pLN,) — log(p+ 1) — 1.
As N, tends to infinity, the capacity with limited training

almost surely [21], where the asymptotic RVQ received powand feedback increaseslag(pN;)—log(log(N;)). Compared

Yrvq 1S given by the following equations [11]. For < B <
B*, v, satisfies
_ N,
0o N, - —-B NT
— LA 19
(i)™ e (%) (19)
and for B > B*,
_ 1. _ _
Yrvq = (1+ v N7-)2 — exp {§Nr log(N,) — (N, — 1) (20)
x log(1 4+ v/ N;) + VN, — Blog(2) }
where
_ 1 _ — _ — —
B = (Nr log(v/N,) — N, log(1 + V/N,) + \/NT) .
(21)

We note thatye?, is a function of onlyB and V... The limit
in (18) implies that

Ely) = (1~

whereky, /N — 0 asN; — oco. Determiningsy, explicitly is
difficult and is an open problem. Substituting (22) and (b6 i

0'121))71"0\?(1]\/} + KN, (22)

with the MISO channel for largév; [14], the optimized rate
for the MIMO channel is larger bipg(log(V;)). However, the
optimal training length for both MISO and MIMO channels
increases to infinity at the same rate, whichNg/ log(V;).
The optimal feedback lengths for MIMO channel and MISO
channel [14] increase to infinity at the rates &f/ log? N,
and N/ log N, respectively.

¢From Theorem 1, the ratio between the optimal feedback
and training lengths for MIMO channel tends to zero

pB° _ Llog(2)
T° " 2uN, log(N;)

—0 (31)

wherea(N;) =< b(N) is equivalent toa(N;)/b(N;) — 1 as

N, — oo. This differs from the result for the MISO channel in
which pB°/T° — 1. The difference can be attributed to the
fact that the amount of normalized feedback needed for the
MIMO channel is less than that needed for the MISO channel
to achieve a desired asymptotic rate/dsincreases. Eq. (31)
implies that the fraction of the packet dedicated to tranin
should be more than that dedicated to feedbackVasand

(12) and (14) gives the upper bount), and the lower bound N,./N; increase.



Capacity bounds; Nr/N( =1; B/Nt =1;p=5dB Nr/Nt =2; L/Nt =50;p=5dB
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Fig. 1. Capacity bounds (bits/channel use) (12) and (14usenumber of  Fig. 2. {T7/L,B¢/L, D¢ /L} versus number of transmit antennas.
transmit antennas with2, = 0.1 and 0.25.

NrINI: 2; LINt =50;p=5dB;p=1

IV. NUMERICAL RESULTS Txand Rx
| |know channel

Fig. 1 shows the upper and lower bounds (12) and (14)
with 02 = 0.1 and0.25, B =1, N, = 1, andp = 5 dB. To
obtain ¢y, and E[n] in (12) and (14), we use Monte Carlo

~

simulations. Both bounds on the capacity with beamforming% -

grow logarithmically with N, as expected. The gap between £ °[ '.:’_'!*& Capacly loyeround |
the upper and lower bounds narrows as the variance fol & /,3» .

estimation error?, decreases. With2 = 0, the upper bound 2 [ -7/ Capacity lowerbound = .- >
is equal to the lower bound, and is the actual capacity. We not ® 'l WATING= 15 _ﬁ;_}_ ---- -

that the gap between the bounds also decreases with largs ° ’_--"' i
B. Since RVQ requires exhaustive search, and the number o IO

entries in the codebook grows exponentially with the number | »°~ \ Optimized capacity lower bound 1

for MISO channel (Nr =1)[14]

of antennas, simulation results are not shownXpr> 12.
. . . . 1 L L L L L L
We simulate the capacity lower bound with a range of possi- 2 4 6 8 10 12 14 16

. . N
ble values ofB andT" and selectB} and7}?, which maximize !

the lower bound. Fig. 2 ShOWS@OVTlO’D_lO} normalized by Fig. 3. Achievable rate versus number of transmit antedviawith different

the packet lengtti, versusN; for N, = 2, L = 50, 4 = 1, and  assumptions about channel knowledge at the receiver ansntier. Also

p = 5 dB. As predicted by Theorem 1, both the optiffadnd shown is the optimized capacity lower bound for MISO chanté] [

B decrease to zero, anl increases tal as N; — oco. The

associated lower bound is shown in Fig. 3 with a dashed line.

We also compare the optimized bound to a lower bound widfe also include in the figure the capacity lower bound for
a heuristic choice of parameter8 & 1 andT = 1.5) shown MISO channel with optimized training and feedback lengths
by a dashed-dot line. FalV, = 3, the bound with optimal [14], which is shown to be substantially lower than that for
parameters is approximately 10% greater than that with tMdMO channel with N, = 2. As N, increases, we expect
heuristic choice. Also shown in Fig. 3 is the capacity witthe gap between the optimized lower bounds for MISO and
perfect channel knowledge at the transmitter and receiver. MIMO channels to increase.

performance with limited feedback and training is subsadigt Fig. 4 shows the capacity lower bound versus total overhead
less that with perfect channel knowledge. 8y = 3, the (T4 uB)/L. The capacity is zero wheh+ B = 0, since the
capacity with perfect channel knowledge is about 40% largestimate is uncorrelated with the channel, and wilep B =
than the rate with optimized feedback and training lengths, since D = 0. The solid line corresponds to optimized
The solid curve with dots is the capacity with perfect channparameters withl, = 10, N; =9, N, =2, u =1, andp =5
estimation andBy feedback bits. Here we see a substantiaB. Different curves correspond to different ratios betwée
gain relative to the solid line, since with perfect channeind B. With equal amounts of training and feedback, the rate
knowledge the receiver does not require training overheaslalmost equal to that with optimized parameters with thekpe
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Fig. 4. Lower bound on capacity versus normalized trainind f@dback

(T + uB)/L. [8]

o 9
achieved wherfT'+ B) /L = 0.2. Allocating overhead accord- ©]

ing to Theorem 1, i.e.uB/T = Llog(2)/(2uN, log(N;))

performs marginally better than allocating equal trainangl 10]
feedback. AsV; increases, we expect the gap between the two
overhead allocations to increase. The performance degrafié]
when B deviates significantly froni” (e.g., B = 2T). The 12
three curves shown are not extended®o+ B)/L = 1 since
simulation complexity increases exponentially withdue to

RVQ’s exhaustive search. [13]

V. CONCLUSION

We have presented bounds on the capacity of a MIMIA]
block Rayleigh fading channel with beamforming, assuming
limited training and feedback. For a large number of trangs)
mit antennas, we have characterized the optimal amount of
training and feedback as a fraction of the packet duratio[ﬁ,
assuming linear MMSE estimation of the channel, and an
RVQ codebook for guantizing the beamforming vector. Ouit7]
results show that when optimized, the fractions of the packe
devoted to training and feedback tend to zero at the rates|n
1/log N; and l/log2 Ny, respectively, agV;, — oo. This is
in contrast to the MISO channel in which both training anﬂg]
feedback lengths tend to zero at the ratelgiog NV, [14].

We showed that allocating packet overhead according to the
ratio uB/T = Llog(2)/(2uN, log(N,)), which is obtained |
by the asymptotic analysis, can achieve close to the optimal
performance for a finite-size system. [21]

Although the pilot-based scheme considered is practital, i
is most likely suboptimal. Namely, in the absence of feedlbac
such a pilot-based scheme is strictly suboptimal, although
it is nearly optimal at high SNRs [3]. With feedback the
capacity of the block fading MIMO channel considered (i.e.,
no channel knowledge at the receiver and transmitter) is
unknown. Extensions of the model presented here include
allocating different powers for the training and data pors.
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