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Abstract— We consider the allocation of power across forward- considers a constraint on the transmitted power, while [13]
link packets in a wireless data network. The packets arrive considers constraints on both the available spreadingscaa
according to a random (Poisson) process, and have fixed length ,\yar The solution to these problems can often be intexgret
so that the data rate for a given packet is determined by the . .
assigned power and the channel gain to the designated user,!N @ prl_cmg framework, where prices a_re_announced for the_
Each user’s service preferences are specified by a utility function constrained resources and users maximize their net benefit
that depends on the received data rate. The objective is to (utility minus cost). The optimal allocation of resourceanc
determine a power assignment policy that maximizes the time- pe found by choosing the appropriate resource prices. In

averaged utility rate, subject to a constraint on the probability - qst of this work, a static situation is assumed, where the
that the total power exceeds a limit (corresponding to an outage) t of acti T fixed. In thi th ' t of acti
For a large, heavily loaded network, we introduce a Gaussian set ol active users Is Tixed. In this paper, the set or active

approximation for the total transmitted power, which is used Users is dynamically varying over the time period during
to decompose the power constraint into three more tractable which resources are allocated. Random traffic variationstmu
constraints. We present a solution to the modified optimization therefore be taken into account when allocating resources.
problem that is a combination of admission control and pricing.  \we consider a model in which packets arrive to the base
The optimal trade-off between these approaches is characteedl. . - .
Numerical examples illustrate the achievable utility rate and ;tatlon accordmg o a P0|sso_n process. The paCkets_ are des-
power allocation as a function of the packet arrival rate. ignated for different users with random channel gains, and
the time to transmit a packet depends on the power allocation
and the associated channel gain. Here a “packet” could also
represent fixed length flow or session for a particular user as
in [19]. An orthogonal signaling scheme is assumed, in which
|. INTRODUCTION multiple packets are simultaneously transmitted to differ
Efficient allocation of radio resources, such as transmissiusers, and the packets do not interfere with each other. Each
power, is essential for supporting diverse applicationsrowviransmitted packet contributes a utility to the designatser,
wireless networks. Here we investigate power allocatian favhich depends only on the transmission time (equivaletitty,
the forward link in a wireless network with rate adaptiveadatdata rate). Our problem is to determine a policy for allowati
traffic. We consider a code division multiple access (CDMAjower to each packet, which maximizes the time-average
system that simultaneously transmits to all active flows; thitility rate (i.e., total accumulated utility per unit timesubject
available transmission power must be allocated among thégea constraint on the total power transmitted by the base
flows. A utility-based approach is adopted, in which thetation.
service preferences of each packet are specified by a utilitySince the number of active users is randomly varying,
function. The network objective is to maximize a time averaghe total power transmitted by the base-station is a random
utility. It is well-known that such utility functions can pture process. We consider an outage constraint on this process,
many common definitions of fairness within a network [1], [2jn Which the total power can exceed a given value with
and can provide for different priorities among users. some small probability. We characterize the solution to this
Power control in cellular CDMA systems based on utilitroblem for a system with a large number of users, so that the
maximization has been studied for both the reverse link [3jransmitted power can be approximated as a Gaussian random
[8] and the forward link [9]-[15]. In the forward link, the process. In that case, the outage constraint can be decethpos
typical problem is to maximize the aggregate utility subjec into three simpler constraints. The solution to this siffigui

constraints on the total available resources. For exarfiil¢, Problem can be viewed in a pricing framework as in [13];
however, there are several fundamental differences., First
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Our focus is on the situation where traffic variations occur utility
on a much faster time-scale than that over which resource
allocation is performed. Specifically, we assume power is
allocated to each packet based on the user’s channel gain
and utility, and this assignment is fixed for the duration
of the packet. The power allocation does not depend on
the instantaneous system state (e.g., the number of active
requests), but only on long-term statistics (e.g., packéte
rates). An alternate approach may take into account thewurr
system state and reallocate resources at every arrival and
departure (e.g., see [16], [17]). Clearly, allocating reses rate
on a faster time scale may improve the resulting utility rate. Example utlty function for data traffic
However, such an approach may not be feasible, due to variods ’
system constraints, and leads to a more complicated abocat
policy. Also, since the allocation considered here is natest
dependent, each designated user derives a fixed utility ratd®ackets arrive to the base station according to a Poisson
upon admission. In contrast, with state dependent reditot  Process with overall rata. Each packet has a fixed length of
the utility associated with a packet can vary depending dn(bits)? We consider a system with a large number of users,
future events. and assume that each packet corresponds to a new user. The

We also assume that the channel varies on a slower tins&annel gain for each user is assumed to be distributed on the
scale than the traffic requirements. Specifically, the chandnterval H = [hmin, hmaz|, Where hpi, > 0 and hpae <
gain does not change during the time required to servec@ With continuous density functioffi; (h). This density can
packet. If this were not the case, the performance could Bg used to model the users’ geographic distribution within
improved by utilizing an opportunistic scheduling alglonit, the cell, and also various propagation effects such as rando
such as the proportional fair rule for the CDMA 1xEvDoshadowing. The channel gain corresponding to each argval i
system [18], [19]. We note that many opportunistic schedyli chosen independently according to this distribution aagsst
algorithms can also be viewed in terms of maximizing afed during the entire transmission of the packet.
aggregate utility rate [20]—[22]. A utility function is associated with each packet, which

The rest of the paper is organized as follows. In Section r@flects the designated user’s desired quality of service. W
we introduce a model for the forward link of a single cell. I?Ssume that the utility depends only on the transmissian rat
Section 11, we formulate a constrained optimization peshl - Since each packet has a fixed length, this is equivalent
where the objective is to maximize the time-averaged wtilifo defining utility as a function of the transmission time
rate subject to a stochastic constraint on the total power. fr @ packet. In this paper, we assume that all users have
Section IV, a solution to the simplified problem is presentdfe same utility functionU(R); however, this formulation
in which the power constraint is decomposed into three md¥@n be extended to scenarios with multiple utility classes.
tractable constraints. We then characterize the optimizsd We assume that/(0) = 0 and thatU(R) is increasing,
tem behavior. Numerical results, which illustrate the aacy concave and continuously differentiable with respectitp
of the Gaussian approximation for the power distributiard a for £ > 0. These are common assumptions for so-called

optimized power allocations, are presented in Section V. elastic” traffic, which describes many data applicatiot [
An example utility function,U(R), with these characteristics

is depicted in Figure 1.
The power allocated to a user depends only on the utility
We consider a model for the forward link within a singldunction U(-) and the associated channel gdin For each
cell, where the base station transmits simultaneously lto ale , it will be useful to define the functiod;, (P), which
active users, and transmissions to different users aremasku relates the utility received by a user with channel gaito
to be orthogonal. For example, this models a CDMA systethe transmitted poweP. This function is given by
with orthogonal spreading codésSuppose that a user with ~
channel gainh is allocated transmission powd?(h). The Un(P) = U(C(RP)). (1)
received Signal-to-Interference Plus Noise Ratio (SIN&) fNotice thatl/;, (P) is different for users with different channel

this user is given bySTNR = hP/o*, whereo? is the total gains even though’(R) is the same for those users.
noise plus interference power. We assume that the received

data rate for a user is a function of the received power, 1
or equivalently received SINR; this relationship is given b
R(h) = C(hP), whereC(-) is an increasing function.

Il. SYSTEM MODEL

. PROBLEM FORMULATION

Our objective is to allocate transmission power to maximize
the utility rate given a constraint on the total transmissio
2We assume that the number of orthogonal codes, or equivaldhtly POWET. A power allocation is specified by a functién: H —

available bandwidth is not a limiting resource. A bandwidémstraint could
be introduced in what follows by adding a constraint on thenber of 3The following can be extended to the case where the lengthaf eequest
simultaneous transmissions. is random, but we will not address this extension here.
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R* that indicates the power used to transmit a packet totlee special case in which all users within the system have
user with channel gaih € H. If P(h) = 0, the corresponding the same channel gaih. With this assumption the solution
packet is considered blocked and not transmitte®(f) > 0, to MAXU is given by a single value®. For the sake of this
the corresponding packets are transmitted with a trangmissexample, we further assume that the utility function is give

time given by by U(R) =1 — e HE,
_ L Since each active user is assigned the same power, the
T(h) = . o
C(hP(h)) average utility is given by
Let {H;}32, be a sequence of independent and identically U — )\ (1 _ 67#%)
distributed random variables representing the channel gfi “vs

the ith arrival, and letK (¢t) denote the number of arrivalswhereT is the transmission time for a packet of lendgthand
in the interval[0,¢). For a given power allocation, the time) is the arrival rate for transmission requests. Clearly, vighw

average utility rate is given by to chooseP to minimizeT". Hence we select the largest value
K() of P, which satisfies the constraint (7). Assuming Poisson
1 - . . .
lim — Z Uy, (P(H,)) @) arrivals, and n_otlng thaf” is the same fpr all packets, the
t—moot — number of active (transmitting) userd], is the occupancy
K(t) of an M/D /oo queue, which is Poisson with paramefer.
K@) [ 1 = Hence the probability that the system is not emptPisN >
= lim — | —= Uy, (P(H; 3
m | K(t) ; . (P(Hi)) ®) 0] = Pr[Psum > 0] =1 —¢e*7T, and
= \Egy {(?H(P(H))}, (4) Pr[Psum >P|Psum >O]
1 = _
assuming the system is ergodic, where the expectation is an = 1T ZPr[Psum > P|N = n]Pr[N = n)
average overy. n= 0
Let.A(t) denote the set of active transmissions at timEhe B Pr|
cardinality of A(t) is N (¢), which is the number of the current T1_ e—AT Z n>p/p PN = n]
active packet transmissions. The total power transmitted a o a7
time ¢ can then be written as _ 1 3 e (AT)"
1—e T n!
Paum(t) = Y P(H ®) n=no
i€ A(t) < qo

This is a stochastic process with statistics that depenchen tNhGYEIv is the indicator function for the everit, andny =
power allocation and the channel distribution. We assurae ti % | is the minimum number of active users, which causes the
under any power allocationf,,,, (t) — P, in distribution total power to exceed’. Given anyq, > 0, we can choose
ast — oo, whereP,,,, is a random variable with the steady-P small enough (equivalently,, large enough) to satisfy the
state distribution. For any power allocation, we constthia preceding outage constraint. The objective is then to fied th
steady-state total power, given that the system is not emptpallestn,, and the corresponding largest such that the
(N(t) > 0), to be no greater than some valuB, with constraint is satisfied.

probability 1 — qo, i.e., Pr(Psum > P|Psum > 0) < qo If \T is large enough, theRr [P, > 0] = 1 — e ~
where gy > 0 is a small constant. Assuming that the systerh and the Poisson random variablé can be accurately
is ergodic, this constraint implies that the fraction ofdinthe approximated as Gaussian. In that case, the constraina(v) c
total power is greater thaf®, when the system is not empty,be replaced by the constraifitr[Ps,,, > 0] < gqo, where

is no greater thagy, which can be viewed as a target outag&s.» iS Gaussian. To see howl' depends on the target

probability. outage probabilityg, Fig. 2 showsPr[ Py, > P|Psym > 0]
The resource allocation problem can be formally stated &s. AT' for different ratiosng/\T' (i.e., no is normalized
Problem MAXU: by the average number of active uset$ = E[N]). The
o . discontinuities in the plots are due to the ceiling functised
maximize AEg (Un (P(H))) (6)  to defineny. As ng/(AT) increasesPr[Pyum > P|Pum > 0]
subject o Pr(Poum > P|Psum > 0) < g0 @) must increase, as shown in the figure. Furthermore, the figure

shows that given a targely (e.g., < 5%), we must have

Note that conditioning orP,,, > 0 (the system not being ny/(A\T) > 1 and AT > 5. The Gaussian approximation for
empty) is needed to avoid the impulsive solution in whichhead®;,,,,, is therefore accurate in this scenario.
packet is transmitted with infinite power and has infinitedim  Verifying the accuracy of the Gaussian approximation by
duration. solving MAXU directly becomes significantly more difficult

Solving Problem MAXU directly appears to be difficultwith more general channel distributions. However, the pre-
in general. In the next section we simplify the problem bgeding analysis indicates that whéi(h) is optimized, the
approximatingP;,,, as a Gaussian random variable. This camumber of active users should be relatively large wikep,,
be justified when the number of active users contributing te close toP. Hence for the analytical results, which follow,
P, is large. To see when this is likely to be true, consideve will assume that the distribution d?,,,, has a Gaussian
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For a large number of active userB,,,, can be approx-

[
£

ol | | | | | +"o§‘;’ 2 imated as a Gaussian random variable. As discussed in the
|k o nz«m= 11 preceding section, we therefore rewrite the constrain&agr)
08 1y g _n/aT=09 |
\ Pag FEBEong 8 o _
P e T ] D ~ P—E(Pyum)
o7 QO S Pr [Psum, > P‘Psum > 0] ~ Q <\/\m) S a0
0.6
z Vo o ) )
305 %%‘\ ] whereQ(z) = [ %642/2(% is the complementary Gaussian
L 5609000000 ) | cumulative distribution functionc(d.f).
03 poeeets '600600000Q This constraint reduces to
/ PN (h) dh + ks \/ / P2(W)N(h)dh < P, (1)
01 H H
IR R A S AN M }o wherek; = Q™" (qo).
M Since N(h) = Afr (h)T(h), we have
Fig. 2. Pr[Psum > P|Psum > 0] versusAT for different ratiosng /AT . / P(h)N h dh = \Ex[E(H)], (12)
and
tail. We remark that the accuracy of the Gaussian assumption / P?*(h)N(h)dh = \Ex[P(H)E(H)], (13)
H

also depends on the choice of utility function. In particuia

is less accurate for a logarithmic utility function, as dissed WhereE(h) = P(h)T'(h) is the energy consumed by user with
in Section V. channel gaim. An inactive user is allocated zero energy.

Substituting (12) and (13) into (11), constraint (7) can be
approximated by

AEw(E(H)) + ki/AEg(P(H)E(H)) < P (14)

IV. UTILITY BASED POWERALLOCATION

A. Decomposition of Power Constraint
Let 5k be a small constant such that, .. — hmin = Koh, Finally, this can be further decomposed into the three con-
for some integetK. Fori = 0, ..., K, defineh; = h, + Straints

t0h. Fori = 0,...,K — 1, let N(i) be a random variable AEg(E(H)) <& average energy
representing the number of active users in steady-state wit{ Ey(P(H)E(H)) <G average powex energy (15)
channel gain ifh;, h;11). The steady-state total powe?, ., E+kVAG< P tradeoff of £ vs. G

h i : . . .
can then be approximated as We will refer to Problem MAXU when (7) is replaced with

K-1 (15) asProblem MAXUA A solution to Problem MAXUA is
Poum P(h provided next. This is accomplished in two steps. First, we
i=0 find the utility maximizing power assignment subject to the

first two constraints in (15) for given values 8fandG. Next,

Taking expected values, we have o ) , o
g exp the combination of and G that yields the highest utility rate

K—1 is derived.
sum Z P
i=0 B. Solution with Fixed® and G

where N (i) is the expected number of active users with Given values foi€ andG, consider the following problem:
channel gains ifh;, hi+1). Since arrivals are Poisson with Problem P1:
overall rate\, N(i) is the occupancy of &//G /oo queue

with arrival rate~ \fz(h;)0h and service timex T(h;). @%m&e A (Un (P(H))) (16)
ThereforeN (i) is approximately Poisson distributed, and subjectto  AEy(E(H)) <& (17)
N (i) ~ M (hi)ShT (h;) = N(h;)5h, (8) En(P(H)E(H)) <G (18)

where N (h;) = Afy (h;)T(h;). Assuming thatP(h)N () is To gain insight into this problem, we consider each of the

Riemann integrable, then lettinth — 0, we have constraints separately. First, we examine the problemaoviti
the energy constraint, i.e.,

(Pam) = | PUN(h) dh (9)  Problem P2:
maximize  AEy (Uy(P(H)))
Likewise, sinceN (i), ¢ = 0,--- , K — 1 are independent, the PiH—RE
second moment oP,,,, is given by subjectto  AEy(E(H)) <¢&.

- From (9) and (12)E(Psum) = \Eg(E(H)), so that Problem
2 2
E(Psum) = /H P=(n)N () dh. 10) pois equivalent to constraining the average sum power.
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To continue, we assume that the transmission rate is pib« is set such that (18) is satisfied with equality, then this
portional to the received power, i.e., pricing scheme provides a power allocation that is the smiut
to Problem P3.

C(hP(h)) = kohP(h) (19) This lemma follows directly from the Kuhn-Tucker optimal-
wherek, is a constant. It follows directly from (19) that the ity conditions, wherex corresponds to a Lagrange multiplier
energy consumed by a user depends 0n|y on whether a us@fsCOl’lStraint (18) The set of active users and the assigned
transmission power is nonzero, and not on the specific powwer levels are determined by which can be interpreted as

level, i.e., a fixed unit price on the product of power times energy. For
each active user, the marginal utility with respect to power
P(h)T'(h) = L/koh, for P(h) >0, . . 7, .
E(h) = { 0. for P(h) = 0. (20) equals the price per unit pow ff(;lgf(jg” = a,(h). Inactive

users have lower marginal utility than the price at zero powe
Since utility is strictly increasing in received power, dlbws o dUn(P(h) | p(ny=0< ap(h). Since U, (P(h)) is concave,

from (20) that the solution to Problem P2 is for each pack%h(P(zg(m

to be either denied transmission (blocked) or transmitteddP(n) is decreasing withP(#). Hence for inactive users,

with infinite power. If no users are blocked and the enerdd POSitive power assignment provides less utility than e ¢
constraint (17) is violated, then admission control is feg (negative surplus). We call those inactive usersmidated

to block some users. This solution is stated as the followir#|e to a combination of high price and small initial slope of
lemma. n(P).

Lemma 1:A power allocation, which achieves the maxi- Assuming all users have the saii¢-) and that (19) holds,
mum average steady-state utility in Problem P2, satisfies the set of users that are intimidated can be characterized as

follows:
P(h) = { oo, for h > he, 1) Theorem 1:There exists a threshold; € 7 such that the
0, forh <he, optimal power allocation to Problem P3 satisfiegh) > 0 if

whereh, is the minimum value ift{ such that (17) is satisfied. and only ifh > h;. The threshold; satisfies:

The lemma follows from the preceding discussion and by dU(R) a(hy)
noting that the energy required by a user decreases with dR |. = kohi -
the channel gain. Hence, blocking those users with smallest =0 !
channel gains minimizes the number of blocked users andThe theorem follows directly from the fact thdf Y =
maximizes (6). We note that it/(R) is unbounded, then ‘ZU(;L*}(DP)% and thata,(h) is decreasing im. This theorem
the solution to Problem P2 is also unbounded, so that anplies that given two users with different channel gaihe t
arbitrary set of users can be blocked. The Lemma impliagser with the smaller channel gain is penalized twice. First
that P, (t) = 0 with probability one (i.e., for aimost atl), that user requires more power to achieve a target SINR, and
and Py, (t) = oo whenever a new request arrive®f course, second, the user is charged a higher unit price per power.
this power assignment is not realistic. This type of behavitotice that asG increasesp decreases ané(h) increases

is eliminated by adding the constraint (18). for all active users. This in turn increases the utility faick
Next we consider Problem P1 withnly constraint (18). active user, and hence results in a higher utility rate. Also
Problem P3: notice that the constraint in Problem P3 does not depend on
o ~ the traffic intensity\, but only on the channel distribution,
maximize ABr (Un (P(H))) fu(h). It follows that changes in the arrival rate, for a fixed
subjectto Ey(P(H)E(H)) <G. fu(h), do not effect the optimal price in Theorem 1.

. o ) Now we return to Problem P1. The solution to this problem
This is a standard optimization problem with a concavg 4 combination of admission control, as in Lemma 1, and the
objective and linear constrairftsand is mathematically equiv- pricing procedure stated in Lemma 2. The resource allagatio
alent to the problem studied in [13]. As in [13], the solutioR.an pe accomplished in two steps. First, the admission @ontr
can be attained via a pricing scheme. step specifies an active channel 8¢t = {h : P(h) > 0}.
Lemma 2:Consider the following pricing scheme: arnat is, users with ¢ 7, are blocked. Second, the pricing
channel-dependent price per unit transmit power of the forgﬂep determines the power assignments across users in the

ap(h) = aE(h) is announced; users respond by requestingtive set. Note that some users not blocked in the first step
power to maximize their surplus (utility minus cost), i.e., )| may be intimidated in the second step.

P*(h) = argmax{f]h[P(h)] — aE(h)P(h)}. (22) Suppose that the average ene_rgy)\EH(E(f_I)) = & for
P(h) someé € [0, £]. Conditioned on this, the solution to Problem

This | ationshio b § , o _ P1 is given as follows:
is linear relationship between rate and power is a reddemgpproxima- . .
tion for many practical systems, e.g., with low SNR and/or Higimdwidth. 1) AssumeP(h) > 0 for any h. Given fx (h) and E(h) in

For large enough rates, capacity considerations imply tiati$ optimistic. (20), check ifAEg(E(h)) < &. If so, admit all users.

5This type offlash signaling also arises in the context of ultra-wideband Otherwise, block users with channel gaihs< h (é)
communications [23], in which case the assumed linear ratepoelation is A . - e
valid. whereh.(€) is selected to satisfy

SNote, we are still assuming the linear relationship betwesgs and power, A N 4
in which caseE(H) can be viewed as a constant independenP¢H ). )‘EH(E(H”H > he(€)) Pr(H > he(€)) = €.
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2) Find o so that (18) is binding for the set of active The set of users blocked through admission control and
users taking into account that users blocked in thetimidation is determined by the channel gain thresholds
previous step are assigned zero power. The optintal(£) and h; (&), respectively. We distinguish the following
power allocation across active users is given by (22).3 cases:

Finally, the solution to Problem P1 can be found by searchiadd: h. > hy,:,, andh. > h;. (Active users are determined by
for the value& € [0,&] that maximizes the total utility rate he.)
AE{UL[P(R)]}. C2: hpin > he and h,,;, > h;. (All users are active.)

For a fixed £, users with the lowest channel gains ar€3: h; > h. andh; > h,,;,. (Active users are determined by

blocked because they derive the lowest utility for any giwen hi.)

Therefore, there exists an energy induced thresholfl) such The next theorem characterizes the transition betweere thes

that users withh, < h.(€) are blocked via admission control..5qes.

Recall that following Lemma 1, we con<_:|uded tha_\t blocked Theorem 3:Consider Problem P1 with constrain(s, G =

users should have the worst channels. This conclusion &bsum /5 .2 . _ )

only an energy constraint and bounded utility functionsreHe X (T )- As £ increases frond to P, the optimal power

we have shown that this conclusion is valid with both enerdgijlocation transitions through the cases C1, C2, C3 in one of

and power-times-energyG) constraints, and any increasingne following sequences: C+ C2 — C3 or C1— C3.

concave utility function. We note that at the optimum, (18) i Proof: Let Al denote the set of values &f where the

always binding, whereas (17) might not be binding. optimal solution to P1 is in C1. Define A2 and A3 similarly.
Note that loweringé may decrease the size of the activé\t € = 0, he = hiea and h; = 0; therefore0 € Al. As £

set, but also increases the average utility derived peveactincreases(z decreases; this results . decreasing witht

packet’ A complete solution to Problem P1 requires findingnd h; increasing. This implies that if € Al then&” € Al

the optimal £ € [0,€] to balance this tradeoff. Next wefor all £ < £ and likewise, if€ € A3 then&’ € A3 for all

show that this search is simplified when we include the la§t = €. When& = P, G = 0, in which caseh; = oo, thus,

constraint in Problem MAXUA. P € A3. Therefore the only possible sequences are-€C2
— C3 or C1— C3. Which of these occurs depends on whether
C. Optimal Admission Control/Pricing Trade-off gl_r not héﬂ)i;f he(£), whereg satisfiesh. (£) = hi(E). (See
igure 6.

Given €& andG, we have shown that the optimal solution to Corollary: The optimale™ € Al
P1 consists of a combination of admission control and pgicin Y- P '

Returning to problem MAXU, notice that any pair of values This follows from the observation that Al is the only region
£ and G, that satisfy ' where both constraints are tight. In A2 or A3, the energy

constraint is always loose.

E+kVAG< P (23)
results in a solution to Problem P1 that is also a feasiblespow V. NUMERICAL RESULTS

allocation for Problem MAXUA. The solution to Problem |n this section, we present numerical results to illustthee
MAXUA is given by the combination that maximizes thepptimization described in the preceding section. The tssul

utility rate. . . that follow assume the exponential utility functidh(R) =
Theorem _Z:The power allocation w_h|ch sol\_/es Probleml_exp(_uR) for 4 > 0, which is concave, increasing, and has
MAXUA satisfies both (17) and (18) with equality. U(0) = 0. The channel density is given bfy (h) = ih_i for

Proof: As noted previously, the constraint (18) is tight undey, < (1,00). This corresponds to a channel gdifr) = 4,
an optimal power allocation. From this it can be seen that thghere - is the distance of a user from the base station, and
utility rate in Problem P1 increases monotonically with  each user's location is chosen uniformly in the intergall).
Suppose the energy constraint (17) is loose. Thecan be e assume the file length is normalized so that ko, the
decreased to the point where the energy constraint is tig¢ale factor in (19), which relates transmission rate teived
resulting in a largelG in (23), which in turn gives a higher power. That is, one unit of received power results in a com-
utility rate. pletion time of one unit. From (22), the surplus maximizing
To solve Problem MAXUA, we can therefore use thgower assignment for active packets with> max(1, he, h;)
following procedure. First, for each pai€, G = 1 (5=£) ), and pricea is given by P(h) = _Ln (kéah;u)_
a feasible solution to Problem P1 can be found via the previou e
steps 1 and 2 witlf = £. Letting U(€) be the resulting . N
utility rate, the solution to Problem MAXUA is then givenA' Accuracy of Gaussian Approximation
by the solution to Problem P1, wheéfeis replaced bye* = We first illustrate the accuracy of the Gaussian approxi-
argmax{U(€),0 < & < P}. That is, the solution to MAXUA mation, which is used to estimate the outage probafility.
is achieved with€ = £*. This is because for each pa#, G),

for which the utility is evaluated, Theorem 2 implies thagita  ~The comparisons with simulation results shown here illustfitw close

. oA the simulated outage probability is to that obtained with tBaussian

is no need to search for the optimélc [0, £]. approximation given specific model parameters. These comparido not

. illustrate how well the solution to MAXUA approximates theligon to the

“Given an arrival rate\, £ may change over a range in which all usergproblem MAXU, since as discussed in Section llI, solving MBX directly
remain active. appears to be difficult.
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is nearly proportional to\u.
From these results we conclude that the Gaussian ap-

G . N ¢ , fthe util proximation is accurate when the average number of active
aussian approximation as a function of the utility par&@mnet, o ¢ g relatively large, i.e., greater than ten. Furtioeem

w, assuming a target outage probability= 0.0_5 and average the approximate Gaussian meang = E(Pyn) = &
power P = 10. For the same parameters, Figure 3(b) shovxé d standard deviation. = \/Var(Psum) — V)G* must
the average number of active packets from simulation ag tisfy me = coe with ¢ > 3. This is due to the fact that

using the Gaussian approximation, as a functiop.ofn both P, > 0, hence a Gaussian distribution with significant mass

cases, S|mulat§d curves are shown for dlffe_rent pack_etadarnm the?}egative region cannot be a good approximation for the
rates). In the simulation model, packets arrive according to

&stribution of P,..m. (We have observed that the rati
Poisson process, and are either blockied:(h.), intimidated ( li; /oG

heh d at th hP(h). The simulated tends to increase withu and \.) To illustrate this point,
(h < hy), or served at the ratey.P(h). The simulated outage giq e 4 shows the empirical density function for the total

probablllty'|sthen the fraction qf time fc_)r Whmﬁs“m.(t) =~ f power P, with two different arrival rate$. The Gaussian
The analytical curves are obtained using the opti(@dl G*) distribution with meanmg = £ and variancer?, = AG*
forl ei(.:h par;lmetehr se_ttlnglg. d babili his also shown. Whern\ = 100, the Gaussian and empirical
n Figure 3(a), t. e simulate 'outage probability appro8cnfepsities are nearly identical. The approximation is not as
the targetgo as eitherA or y increases. The gap is MOre, o rate withy — 25, although it is still reasonable.
sensitive to the arrival rate\_than the utility parameter.. The accuracy of the Gaussian approximation also depends
Figure 3(b) shows that th? simulated and analy'qcal yallies& the assigned utility functions. Additional results ir4]2
the average number of active packets are ngarly |dent.|eah A show similar trends to those shown here for a piecewiserlinea
and )\ increase, the average number of active users increage ity function with one breakpoint. In contrast, the Gai
Fur_thermore, the results ShOV_V that the average _numb_era proximation is typically not accurate for the logaritiemi
active packets in the system increases more rapidly W'thutility function U(R) = log(1 + uR). Namely, the empirical

Figure 3(a) compares the simulated outage probability thith

thar) with p. . .d.f. has a much heavier tail than the Gausspad.f, due
Figure 3(b) shows that the average number of active pack Sthe fact that the assigned pow@t(h) — kb _ 1
— - al ukoh

N varies approximately linearly witp. To see why, from the

o . _ approaches infinity as the user gets close to the base station
analysis in Section IV-A, we can write

N = /OO N(h)dh B. Utility and Optimized Power Allocations
n;x{me,m} In this section we show numerical results for utility ratelan
_ / Afr (R)T(R)dh. (24) Ppower allocations based on the Gaussian approximation. Fig
max{1,he,h;} ure 5 shows how the average utility per usey Uy [P(H)],
With the exponential utility function, we hav&'(h) = varl_es W'th_l_)r‘] anld £ .Efmd. ther]:a fﬁreG) V\ihen P": 1.0 and .
L/kohP(h) = 7“52,12 , and combining this with (24) gives %0 = 0.01. ne classi |_cat|on of the resu ting & ocat_lon, as in
g(LE0lT Theorem 3, is also indicated on the figure. The maximum point
0o 1 is always in Al, as stated in the Corollary. Adncreases, the
N = /\uL/ fu(h)————dh. (25) solution transitions from C+ C2 — C3 when\ is small (i.e.,
uk2h2
max{1,he,h;} log(#)

. . . _ 9This is computed from a histogram of the total powers seen ekqpa
The integral varies slowly with respect foand i, so thatN  arrivals.
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The active radius shrinks slightly asincreases. As the traffic
intensity increases, the optimal allocation blocks thersise
with the worst channels while trying to maintain the recdive
power level for the remaining active users (see Figure 7(b))
Apparently, this blocking strategy yields a higher utilityte
than offering a relatively degraded service to all users.
Figure 8 shows the maximum average utility per user
Ex{UL[P(h)]} versus the target outage probabilify with
different arrival rates. As\ increases, the average util-
ity per user decreases; however, the overall utility rate
AEx{UL[P(R)]} increases. A smallegy, or equivalently, a
tighter power constraint, results in a lower utility per use
Notice that the average utility per user is insensitiveq$o
when is small < 10). This is because the exponential utility
U(R) = 1 — e % is relatively flat (close to one) wheR
becomes large. Whek is small, the optimal power allocation
to active users is quite large, so that the correspondintstra
mission ratesf) are also large. Therefore, the average utility

A = 1,10, 20). For larger), the allocation transitions directly Per user is close to one.

from C1 to C3.
Figure 6 shows howh.(&) and h;(£) vary with £ given
different arrival rates\. The minimum channel gaih,,,;,, = 1

VI. CONCLUSIONS
We have studied forward link power allocation for stochas-

is [3}1]50 shown. Foh(£) < hmin, We chooseh, to satisfy tically varying data traffic. Each power assignment remains
A max
Jhe(&)

L qn =
Loh
continuously from wheréi.(£) > hy,in. As expectedh.(E)

& so that the curve is extendedconstant for the duration of the packet, and along with the

channel gain and associated utility function, determires t

decreases witht, whereash;(€) increases with€. When tility for transmitting the packet. The objective is to éehine

A = 10, the system transitions from C1 to C2 whenp falls

a power assignment policy that maximizes the time average

below 1., and from C2 to C3 wherk; increases above utility rate. We introduced an outage constraint on theltota

hmin- When\ = 40, the intersection point of, and h; is

power in order to derive a simple power assignment policy,

larger thanh.,,;; in this case the solution transitions directlywhich depends only on steady-state system propertiesifSpec

from C1 to C3.

ically, this policy depends only on the distribution of chah

The resulting optimal power allocation is shown in Figurgains, packet arrival rate, and utility functions. Each pow
7(a) as a function of the designated user’s distance from thgsignment then depends only on the designated user’sethann
base station with\ = 20, 30, 50. The closer a user is to thestate and associated utility function.
base station, the better the channel. The received powahwh By approximating the steady-state total power as a Gaussian
is proportional to the data rate, is also shown in Figure.7(bandom variable, the outage constraint was decomposed into
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