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Abstract

We propose and analyze a limited feedback scheme for downlink MIMO-OFDMA. Our analysis explicitly
accounts for the feedback overhead by assuming a time division duplex system in which all feedback and data
transmission must occur with a coherence time. As the fraction of coherence time devoted to feedback increases,
the base station can allocate resources more efficiently, but has less time available for data transmission. In
the proposed scheme, the base-station sequentially receives feedback from the users and decides when to stop
receiving additional feedback and begin data transmission. Each user feeds back their best codeword (beam)
selected from a beam-forming codebook on each group of OFDM sub-channels, provided that the channel gain
exceeds a given threshold. For a given feedback threshold, the optimal stopping rule used by the base station
is derived. With this rule we show that the total throughput of this scheme scales linearly with the number of
users, provided that the number of OFDM sub-channels also scales with fixed ratio. The effect of varying the
coherence time and feedback rate is also characterized.

I. INTRODUCTION

Orthogonal Frequency Division Multiple Access (OFDMA) combined with Multiple Input Multiple
Output (MIMO) techniques provide numerous degrees of freedom in space and frequency. To efficiently
exploit these in a cellular downlink, the base station needssufficient channel state information (CSI)
to allocate resources and schedule users. In a multiuser system, the feedback overhead for acquiring
CSI at the base stations can be prohibitive. This has motivated the study of several limited feedback
schemes for single antenna OFDMA systems [1], [3]–[5], single user MIMO-OFDM systems [11], [12]
and MIMO-OFDMA systems [13].

In [1], [4], [5] a threshold-based feedback scheme has been studied for single antenna OFDMA
systems. There, each user sends the base station one bit per sub-channel to indicate whether the channel
gain is above or below a given threshold. Limited feedback schemes have also been considered in the
setting of narrow band downlink MIMO system (e.g., see [7]–[9]). In MIMO systems, the feedback
information usually contains the channel magnitude as wellas the channel direction in order to exploit
spatial diversity. In [11]–[13], the authors exploit correlation in the frequency or time domain to reduce
the feedback for MIMO-OFDM. However, a limitation of these schemes is that as the system size
scales (i.e., the number of sub-channels and number of usersbecomes large), the required feedback also
increases. Given a finite coherence timeT and feedback rateRF per sub-channel, the time for feedback
will eventually dominate the entire coherence timeT .

In [2] we introduced two limited feedback schemes for the downlink of a single-antenna OFDMA
system. Both schemes were shown to achieve positive throughput as the system size scales when the
time for feedback is explicitly taken into account. Here we study an extension of thesequential scheme
from [2] for a MIMO-OFDMA system. The feedback in this schemeis limited by two techniques:i)
Channels are grouped. One bit is used to indicate whether themagnitude of all the channels within one
group is above a threshold.ii) Each user compresses the binary feedback vector before sending it to the
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base station. The users feed back sequentially. Hence once the channel group size, threshold and number
of users are set, the fraction of time devoted to feedback becomes fixed. That is due to the assumption
that every user must feed back its CSI to the base station. Provided that the loadβ = K/N is less than
RF T (number of feedback bits per coherence time), the total datathroughput scales linearly with the
number of sub-channelsN as N → ∞ and K → ∞ (with fixed β). In contrast, with unlimited CSI
feedback the total throughput scales likeN log log K, where the additional growth is due to multiuser
diversity. With finite RFT this additional terms disappears. Furthermore, for high enough loads the
sequential scheme in [2] achieves zero throughput due to therequirement that all users feed back. This
motivates us to consider anadaptive version of this scheme in which only a subset of users feed back
within each coherence time.

Given a fixed coherence time, we develop an adaptive sequential feedback scheme for MIMO-OFDM
in which, based on the feedback received so far, the base station decides whether to request CSI feedback
from an additional user or start data transmission. This decision balances the multiuser diversity gain
associated with additional feedback with the required overhead. We formulate this decision as an optimal
stopping time problem [10] and characterize the optimal stopping rule. We then optimize the parameters
of our scheme, which include the sub-channel group size and the channel gain threshold. The optimized
scheme is shown to have a throughput that scales linearly with the system size for all loads. We also
study the impact ofRF T on the data throughput, and show that if this quantity scalesfaster thanlog K
as the system scales, the multi-user diversity gain oflog log K is recovered.

II. SYSTEM MODEL

We consider a downlink MIMO-OFDMA system withK users andN OFDM sub-channels (each
with bandwidth normalized to one). Each user has a single antenna and the base station hasM transmit
antennas. The received signal on thelth (1 ≤ l ≤ N) sub-channel of thekth user is

yk,l = hH
k,lVlS + nk,l (1)

wherehk,l is anM ×1 channel vector for userk andnk,l is complex Gaussian noise with unit variance,
which is independent across sub-channels and users. The channel vectorshk,l are modeled as a block-
fading process with block-lengthT , which we will refer to as the channel coherence time. Duringeach
block, each component ofhk,l for all k and l is generated according to ani.i.d. complex Gaussian
distribution with zero mean and unit variance, corresponding to a rich scattering environment. The
realization ofhk,l is assumed to be known perfectly at receiverk at the start of each coherence block,
but not at the transmitter or any other receiver. All beamforming vectors (codewords) are assumed to be
selected from a single codebook withM unit norm vectors[v1, . . . , vM ]. The matrixVl = [vl,1, . . . , vl,Ml

]
in (1) is M × Ml, whereMl is the number of data streams scheduled on thelth sub-channel. The
columns ofVl correspond to the codewords assigned to the scheduled userson sub-channell. The
matrix S = [s1, s2, . . . , sMl

]T contains the data symbols of the scheduled users. The base station is
assumed to use an on-off power control policy, so that if a sub-channel is requested by at least one user,
a constant powerP is allocated to this sub-channel. If multiple streams are scheduled on a sub-channel,
this power is divided equally across the streams.

As in [2], we consider a feedback scheme in which the users send limited feedback at the start of
each coherence block. The system is time-division duplex, so that when feedback is being sent, data
can not be transmitted. All feedback is assumed to be sent at afixed rateRF bits/sub-channel, so that
if there areN subchannels the total feedback rate isRF N . Hence, ifLF bits of feedback are sent, then
T (1 − LF

RF N
) seconds remain for data transmission. During each coherence block, the users feed back

CSI information sequentially in a given order, which may change from block to block according to a
pre-determined schedule. The base station adaptively decides how many users send feedback before it
begins transmitting data.1

1This requires the base-station to send a control signal to the users to indicate when to stop sending feedback.



Each userk, which sends feedback in a given coherence block, first quantizes its channel gainhk,l

on each subchannell to the closest codeword defined by its inner product as in [8],[9],

dk,l = arg max
1≤m≤M

| hH
k,lvm | . (2)

As in [7], [9], the user then estimates the received signal-to-interference-and-noise ratio (SINR) it would
see on sub-channell if it were allocated the codewordvdk,l

. This estimate assumes that the maximum
of M users are scheduled simultaneously on this sub-channel. The resulting SINR estimate is given by

γ̃k,l =
P
M
|hH

k,lvdk,l
|2

1 +
∑

j 6=dk,l

P
M
|hH

k,lvj |2

=
|hH

k,lvdk,l
|2

1/ρ +
∑

j 6=dk,l
|hH

k,lvj |2
(3)

whereρ = P/M . User k then compares the estimated SINR,γ̃k,l, with a given thresholdt0. User k
only requests sub-channels for whichγ̃k,l exceeds the threshold. Let

p0 = Pr(γ̃k,l ≥ t0)

denote the probability the estimated SINR on a particular sub-channel exceedst0.

Lemma 1: If t0 ≥ 1, thenp0 = M
et0/ρ(1+t0)M−1

.

The conditiont0 ≥ 1 ensures that the estimated SINR associated with at most one of the codewords
for each user will exceedt0 on a given sub-channel. The result follows from this assumption and the
assumed fading distribution. To simplify our analysis, we assume thatt0 ≥ 1 for the remainder of the
paper.

To reduce the required feedback, we divide theN sub-channels into non-overlappingsub-channel
groups, each containingαN sub-channels, where0 ≤ α ≤ 1. A user who sends feedback in a coherence
block requests a particular sub-channel group if and only ifthe estimated SINR for all theαN sub-
channels within the group are above the threshold. Therefore, the probability a user requests a particular
group isp1 := pαN

0 . The amount of feedback can be reduced by increasingαN or t0. If userk requests
a group, we assume it feeds back the beam indices,dk,l, corresponding to theαN sub-channels within
the group. Hence, the CSI at the receiver is aMαN -ary sequence with lengthN/(αN). In order to
reduce the feedback overhead further, the feedback bits of each user can be losslessly compressed
before transmission. The length of the compressed vector offeedback bits depends on the particular
compression scheme used. We will specify a particular scheme in Section IV. However, we emphasize
that the stopping rule developed in the next section does notdepend on this particular scheme.

Our main performance objective is the sum-rate, which can bewritten as

R̃ = (1 − f)Nar (4)

wheref indicates the fraction of a coherence-block used for feedback, Na denotes the number of data
streams scheduled andr is the achievable rate per scheduled sub-channel. We assumethat r is matched
to the feedback thresholdt0 and is given by2

r = log(1 + t0).

The value ofNa andf depend on both the channel group size, the feedback threshold and the number
of users, which send feedback during each coherence band. Exact expressions for these will be studied
in the following sections.

2This is reasonable assuming that the users are only assigneda few sub-channels and do not code over multiple coherence blocks. If
user’s could code over many sub-channels then they could achieve the larger rate ofE(log(1 + hH

k,lvm||hH
k,lvm|2 > t0).



III. OPTIMAL STOPPING RULE

In this section, we characterize the optimal stopping rule that the base station should use to decide
when to stop receiving additional feedback. For this we assume that the total coherence timeT is divided
into K

′

slots, where each slot is used either for CSI feedback from one user or data transmission. If
the slot is used for CSI feedback, we assume that the scheduled user feeds back its CSI using all
subchannels to the base station within the given slot.3 Given the cumulative CSI at the end of each slot,
the base station must decide to either request CSI feedback from another user in the next time-slot or
to allocate resources according to the current available CSI and start transmitting data. Once it starts
transmitting data, it continues doing so for all of the remaining slots in the current coherence block.

Let sn = [x1,n, x2,n, . . . , xM,n, x0,n] be a vector summarizing the feedback information after thenth

slot, wherexi,n (0 ≤ i ≤ M) denotes the number of sub-channels on whichi distinct codewords have
been requested by thenth time-slot, i.e.,i data streams can be scheduled simultaneously onxi,n sub-
channels. The sum of all the elements insn,

∑M
i=0 xi,n, is equal to the total number of sub-channelsN

in the system. We refer tosn as the state of the system at timen. If the base station stops receiving
CSI feedback after slotn, when the system is in statesn, then the corresponding sum-rate is given by

R(n, sn) =
(

1 −
n

K ′

)

M
∑

i=1

(ixi,n) log(1 + t0) (5)

Comparing with (4), the fraction of the coherence time used to transmit data isf = 1 − n
K ′ and the

total number of data streams scheduled isNa =
∑M

i=1(ixi,n).
Given the previously defined state, we can view the decision faced by the base station as an optimal

stopping problem. Namely, the base station’s decision after each slot is to either stop requesting CSI
feedback, in which case it receives a pay-off given by (5), orrequest additional feedback, in which case
it can determine an expected future pay-off given the current state. Furthermore, the sequence of states
is a Markov process. Hence, we can use results from optimal stopping theory to design a stopping rule.
Such a rule is given in the following Proposition.

Proposition 1: The optimal stopping timej∗ for a system withK
′

slots exists and is given by

j∗ = min

{

j ≥ 1 :

M
∑

i=1

(ixi,j) ≥
(K

′

− (j + 1))Np1

1 + p1

M
(K ′ − (j + 1))

}

. (6)

Proposition 1 gives a simple threshold policy that the base station can follow to determine the stopping
time j∗. Namely, after each time-slot the base-station stops if andonly if the total number of streams
it can schedule, given by

∑M
i=1(ixi,j), exceeds the time-varying threshold on the right-hand sideof (6).

Given that each coherence timeT is divided into a finite number of time slots, determining theoptimal
stopping time is a finite horizon dynamic programming problem, which can in general be solved using
backward induction. However, for this problem backward induction is not needed, i.e., it can be shown
using the rate expression in (5) that a one-stage look-aheadpolicy (i.e. stopping ifRn ≥ E(Rn+1|sn)) is
optimal. This follows from showing that the problem is amonotone stopping problem [10]. The detailed
proof is omitted due to space considerations.

IV. PERFORMANCE

A. Feedback constraint

We first express the feedback constraint in terms of the system parameters. Since the total bandwidth
is divided into sub-channel groups with sizeαN , the CSI at the receiver is a vector of lengthN/(αN)

3Of course, the validity of this assumption depends on the scheme used for compressing the feedback and the feedback threshold. This
relationship will be explored in the following section.



with elements that can take one ofMαN + 1 values, where one of these values indicates that a sub-
channel group is not requested. Conditioned on a sub-channel group being requested, the corresponding
feedback symbol takes on one ofMαN values with uniform probability. We assume that each user
compresses this feedback vector to within one bit of the entropy. Since the channel follows ani.i.d.
distribution across the subchannels, the(MαN +1)-ary feedback symbols are alsoi.i.d., and the entropy
of each feedback symbol is4

Lent =

(

MαN p1

MαN
log

(

MαN

p1

)

+ (1 − p1) log

(

1

1 − p1

))

= H(p1) + αNp1 log M (7)

whereH(p1) = p1 log(1/p1) + (1 − p1) log(1/(1 − p1)).
As the system size scales (N becomes large), we can assume that each user’s feedback can be done

within the given time durationT/K
′

at the rateNRF . Namely, with a variable length coding scheme
the actual feedbackLi for each useri is random; however, as the number of sub-channelsN increases,
the time to send useri’s feedback satisfies

Li

NRF
→

Lent

αNRF

by the law of large numbers.5 Based on this, we model the relationship between the system parameters
and the number of slots by assuming that

Lent + 1

αNRF
=

T

K ′
(8)

where we have added an extra one bit to the entropy to ensure that each user must send back at least
one bit. Substituting forLent, this is equivalent to the following

1

αN
H(p1) + p1 log M +

1

αN
=

RF T

K ′
. (9)

Using thatp1 = pαN
0 and the value forp0 in Lemma 1 gives

K
′

p1

(

y + (y − log M)
(1 − p1) log(1 − p1)

p1 log(p1)

)

+ γβ = RF T (10)

where
y , log(

M

p0

) =
t0
ρ

+ (M − 1) log(1 + t0) (11)

and the group size

αN =
log(p1)

log(M) − y
. (12)

4It would be more precise to denote the entropy asLent(N, α, p1), but to simplify our notation we suppress the dependence on these
parameters.

5Some care is required in showing this sinceα andp1 may vary with the system size; in particular, here we are assuming thatα → 0
so that each user is compressing an infinite number of symbols, as the following results show this is the case in an optimized system.



B. Asymptotic Results

As shown in Proposition 1, the stopping timej∗ is a random variable in each coherence timeT . It
appears to be difficult to determine the probability distribution of j∗; however, we can determine the
asymptotic behavior ofj∗ asK andN both tend to infinity with fixed ratioβ = K/N . Namely, referring
to the stopping criterion in Proposition 1, dividing the left-hand side byN , we note that almost surely

∑M
i=1(ixi,j)

N
→ E(Mj) (13)

by the law of large numbers. The right-hand side of (13) depends only on the stopping timej, the
request probabilityp1, and the total number of time slotsK

′

. An expression forE(Mj) as a function
of j andp1 can be derived by induction onj, and is given by the following Lemma.

Lemma 2: As K andN goes to infinity with fixed ratio,j∗ asymptotically converges to a constant
satisfying

(

1 −
p1

M

)j∗ (

1 +
p1

M
(K

′

− (j∗ + 1))
)

= 1. (14)

Lemma 2 indicates the average fraction of time devoted to feedback for a large system. Based on this
result, we can derive the corresponding average data throughput per sub-channel. Namely, the capacity
objective with fixed parametersα, t0, andK

′

is given by

C(α, t0, K
′) = M

(

1 −
j∗

K ′

)(

1 −
(

1 −
p1

M

)j∗
)

log(1 + t0). (15)

We wish to maximize this expression overα, t0 andK
′

subject to the feedback constraint (10), where
j∗ is determined by (14) andy is given by (11). Also, we have the additional constraintsαN ≥ 1 and
t0 ≥ 1 (by assumption), which lead to

y > log M (16)

y ≥
1

ρ
+ (M − 1) log 2. (17)

The preceding optimization problem is difficult to solve analytically, although we are able to derive
certain scaling properties. These are summarized in the following proposition.

Proposition 2: As K → ∞ andN → ∞ with fixed ratio, to maximize the throughputC(α, t0, K
′),

the system parameters must scale as follows:
• The number of slotsK ′ log K ′ = θ(K).
• The optimal stopping timej∗ grows asθ(K ′).
• The group sizeαN grows asθ(K ′).
• The thresholdt0 is bounded.

Furthermore, given such parameters,C(α, t0, K
′) → C∗, for some non-zero, finiteC∗.

The last part of this proposition states that the sum-capacity of an optimized system scales linearly
with the number of sub-channels, i.e. likeC∗N . The proof consists of proving the following lemmas.
Namely, letKp1 → µ1 asK andN tend to infinity, where0 ≤ µ1 ≤ ∞. Suppose also thatK

′

p1 → γµ1,
where0 ≤ γ ≤ 1.

Lemma 3: If γµ1 = 0 or ∞, the average capacity converges to zero per sub-channel.

This lemma indicates that the optimalγµ1 has to converge to a finite positive value. The proof consists
of noting that ifγµ1 = ∞, (10) implies that the thresholdt0 has to be zero, and ifγµ1 = 0, Lemma 3
implies that the average number of data streams scheduled ona particular sub-channel approaches zero.
In both cases, the capacity must then converge to zero.



Lemma 4: Given any finite positive value forγµ1, to maximizeC(α, t0, K
′) the optimalp1 → 0 and

the optimalK
′

→ ∞.

For any0 < γµ1 < ∞, if we fix the fraction of time devoted to feedback, i.e.,ϕ = j∗/K
′

is a constant,
we can show thatC(α, t0, K

′) is a decreasing function ofp1. Therefore, the optimal asymptotic limit
of p1 should be 0.

From Lemma 4 we conclude that the sum throughputC can be expressed as a function ofγµ1. The
proposition then follows by optimizingC over this value.

C. System Comparison

We now compare the performance of the sequential scheme proposed in [2] with the adaptive
sequential scheme. In the scheme in [2], all users compress their feedback and send it at the start
of each coherence block. Such a scheme can be treated as an extreme case of the adaptive scheme in
which we allocateK

′

> K slots within one coherence timeT . The base station waits for the feedback
bits from all the users in each coherence timeT , which implies thatK slots are used for feedback and
K

′

− K slots for data transmission. As in (15), the average system throughput per sub-channel can be
expressed as

Cseq(α, t0, K
′) = M

(

1 −
K

K ′

) (

1 −
(

1 −
p1

M

)K
)

log(1 + t0). (18)

We can again optimize this over the system parameterst0, α andK
′

, subject to (10),(12),(16),(17) as
well as the constraint thatK ′ ≥ K. The following lemma characterizes some scaling properties of the
solution to this optimization.

Lemma 5: As K → ∞ andN → ∞ with fixed ratio, to maximize the throughputCseq(α, t0, K1) the
system parameters must scale as follows:

• Kp1 converges to a positive finite value.
• K ′/K converges to a positive finite value.

Furthermore, given such parameters,Cseq(α, t0, K
′) → C∗

seq, for some non-zero, finiteC∗
seq.

The proof of lemma 5 is similar to lemma 3. Namely we show that if the parameters do not scale in
this way we show that the throughput must go to zero.

The last part of Lemma 5 implies that the sequential scheme has a capacity that scales likeC∗
seqN .

From the above discussion it is clear thatC∗
seq ≤ C∗, since the adaptive scheme optimizes over a

larger range ofK ′. Next we show that even if we restrict the sequential scheme to usingK ′ = K time-
slots, it will still perform better than the sequential scheme proposed in [2]. Specifically, letCf(α, t0)
denote the system throughput per sub-channel achieved by the adaptive sequential scheme whenK ′ is
set toK. We can again consider optimizing the throughput of this restricted scheme overα andt0. By
following a similar argument the asymptotic behavior of theoptimal parameters can be characterized
and it can again be shown that under the optimal parametersCf (α, t0) → C∗

f . The next lemma compares
the first order growth of this scheme with that of the sequential scheme from [2].

Lemma 6: For all loadsρ, C∗
seq ≤ C∗

f .

This shows that the asymptotic performance of the sequential scheme is no better than that of the
adaptive scheme withK ′ = K. In other words, fixing the number of feedback slots atK but adaptively
stopping, is better than havingK ′ > K slots but requiring all users to feedback.

D. Effect of RFT on Capacity

Previously we have assumed that the the number of potential feedback bits per sub-channelRF T
was fixed as the system scales. In this section, we study the asymptotic performance of the adaptive
feedback scheme whenRF T also scales.



Proposition 3: When RF T increases slower thanlog K, the parameters of the optimized system
satisfy the following:

• The asymptotic limit ofK
′

p1 scales withRF T in the form ofM log(ρRF T/M).
• The fraction of time devoted for feedback goes to zero at the order log(log(ρRF T/M))

log(ρRF T/M)
.

• The thresholdt1 scales withRF T at the order ρRF T/M
log(ρRF T/M)

.
• The capacity per sub-channel grows at the orderM log(ρRF T/M) − 2M log(log(ρRF T/M)).

WhenRFT increases faster thanlog K, the capacity per subchannel of an optimized system grows at
the orderM log(log K).

Proposition 3 states that the throughput scaling is proportional to log(RF T ) if RF T increases slower
than log K. If RF T scales faster thanlog K, the full multiuser diversity gain can be exploited.

V. NUMERICAL RESULTS

In this section, numerical results are shown to illustrate the performance of the proposed scheme.
We assume in the simulation that the channel from each transmit antenna to each user is i.i.d. Rayleigh
with unit variance. The base station hasM = 4 transmit antennas. Each user has one receive antenna.
The system load isβ = 2. The maximum number of feedback bits per sub-channel per coherence time
is set to beRF T = 10. The power assigned to each active data stream is normalizedto 1.5 Watts.
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Fig. 1. Performance Comparison

Figure 1 shows the performance the three schemes consideredabove: the adaptive scheme, the
sequential feedback scheme from [2], and the adaptive scheme with K ′ = K. In this case, both adaptive
scheme perform significantly better than the non-adaptive scheme for all system sizes considered.

Figure 2 shows the performance of both schemes as a function of RF T . As shown in [2], when
β ≥ RF T , the throughput of the sequential scheme goes to zero. In contrast, the adaptive feedback
scheme can work for any value of system load andRF T . The plot on the right illustrates this. From
Proposition 3, the performance of the adaptive scheme should increase likelog(RFT ) and a similar
scaling holds for the sequential scheme; this can be seen in the curve on the left, which shows shows
these curves over a larger range of values ofRF T .

Figure 3 shows the fraction of time allocated for feedback for different values ofRF T . The fraction
of time will converge to a constant as the system size increases. For the values ofRF T used in the
simulation, the fraction of feedback converges to values between 0.4 and 0.5, i.e. roughly, half of the
coherence timeT is devoted for feedback. Also, note that asRF T increases, this fraction decreases.
Figure 4 shows the average number of subchannel groups requested by one user and the optimal threshold



2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
F
T

C
ap

ac
ity

 p
er

 S
ub

−
ch

an
ne

l
K=60, P=1.5, M=4, β=2

 

 

Adaptive Feedback
Fixed Feedback

0 20 40 60 80 100 120 140 160
0

0.5

1

1.5

2

2.5

3

R
F
T

C
ap

ac
ity

 p
er

 s
ub

−
ch

an
ne

l

K=60, P=1.5, M=4, β=2

Fig. 2. Performance versusRF T Small values ofRF T are shown on the left; larger values on the right.
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growth for different values ofRF T . In Figure 3, the fraction of time for feedback is around 0.5 for both
RF T = 25 andRF T = 50. However, in the case ofRF T = 50, the threshold is higher thanRF T = 25
and the average number of requested subchannels are lower than RFT = 25. This implies that when
RF T increases, the base station must probe more users to exploitthe multiuser diversity.

VI. CONCLUSION

We have proposed an adaptive limited feedback scheme for downlink MIMO-OFDMA with a finite
coherence timeT and limited feedback link capacityRF . This scheme is based on using an opti-
mal stopping rule to determine the feedback time adaptivelywithin one coherence time interval. We
characterized the optimal stopping rule and studied the scaling behavior of the system parameters and
the sum-throughput as the number of users and number of sub-channels scale with fixed ratio. In this
limiting regime the optimized system was shown to have a sum-throughput that scales linearly with the
system size for any load. In this paper, we have assumed that the codebook size is equal to the number
of transmit antennas. Potential future directions includeconsidering larger codebooks as well as models
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Fig. 4. The average number of sub-channel groups requested (left) and the optimal threshold (right) for the adaptive feedback scheme
as a function of the total number of sub-channels.

with correlation in either frequency or time.
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