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Abstract—We consider the capacity of a wideband fading
channel with partial feedback, subject to an average power con-
straint. The channel is modeled as a set of parallel independent
block Rayleigh fading sub-channels with finite coherence time (L
channel uses). The transmitter probes a subset of sub-channels
during each coherence time by transmitting pilot sequences for
channel estimation. For each sub-channel probed, one bit of
feedback indicates whether or not the channel gain exceeds a
threshold allowing transmission. Our problem is to optimize
jointly the training (both length and power), number of sub-
channels probed (probing bandwidth), and feedback threshold to
maximize the achievable rate (lower bound on ergodic capacity)
taking into account the sub-channel estimation error. Optimizing
the probing bandwidth balances diversity against the quality
of the sub-channel estimate. We show that the achievable rate
increases as S log L, where S is the Signal-to-Noise Ratio, and
exceeds the capacity with impulsive signaling (given by S)
when L exceeds a (positive) threshold value. Moreover, the
optimal probing bandwidth scales as S L

log2 L
. In contrast, without

feedback the optimal probing bandwidth for the probing scheme
scales as SL1/3 and the achievable rate converges to S, where
the gap diminishes as SL−1/3.

Index Terms—ultra-wideband, channel probing, pilot symbols,
one-bit feedback

I. INTRODUCTION

As the bandwidth of a fading channel increases, accurate
channel estimation becomes a major challenge. This is due
to the increasing number of coherence bands, which must
be estimated in a finite coherence time. **The associated
increase in channel estimation error leads to a loss in capacity,
which increases as the transmitted signal is spread across
wider bandwidths [1]–[3]. To avoid this loss due to channel
estimation error, it is necessary to use impulsive, or “flash”
signaling [4], [5], which concentrates the signal power in time
or frequency.**

We consider communications over a wideband channel
assuming the receiver can relay limited feedback about the
channel to the transmitter. The channel is modeled as a set of
M parallel block fading sub-channels. Each sub-channel repre-
sents a coherence band having finite coherence time, consisting
of L channel uses. The sub-channel gains are independent
and Rayleigh distributed across sub-channels and coherence
blocks. **More general channel models, in which channels
gains are correlated across the time and frequency blocks, can
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be reduced to the model considered in this paper. Specifically,
along the lines of [17], one can represent correlated channel
parameters as combinations of degrees of freedom (or basis
dimensions) that are independent in time and bandwidth. **

If both the transmitter and receiver have full channel state
information (CSI) (perfect estimates of all sub-channel gains),
then the transmitter can optimize the power distribution over
sub-channels during each coherence time. Assuming an av-
erage power constraint, the capacity then tends to infinity
as logM [6], [7]. In contrast, with limited feedback per
coherence time the capacity remains finite as M →∞, since
the transmitter can obtain CSI for only a finite number of
sub-channels [6].

Here we assume that neither the transmitter nor the receiver
knows the channel at the beginning of each coherence block.
Hence any CSI, which is relayed to the transmitter, must be
estimated at the receiver. For that purpose, we assume the
transmitter probes a subset of sub-channels by transmitting a
pilot or training sequence over each sub-channel. The number
of probed, or active sub-channels N is called the probing
bandwidth. The receiver estimates the active sub-channels and
indicates to the transmitter which of those gains exceeds a
threshold for data transmission. That requires no more than
one feedback bit per active sub-channel. The transmit power
for data transmission is then uniformly spread over that subset
of active sub-channels (on-off power allocation).

Given a large number of coherence bands (sub-channels)
and limited training power, the quality of the channel estimate
decreases as the training power is spread over a larger number
of active sub-channels. However, increasing the set of active
sub-channels also increases the chances of finding good sub-
channels (a form of diversity). Balancing these two trends
gives an optimal probing bandwidth, which depends on the
training power and the coherence time.

We optimize the probing bandwidth with and without one-
bit feedback by maximizing a lower bound on the capacity
over the training length, training power, and feedback thresh-
old. The lower bound is the rate achieved with a Gaussian
codebook, assuming coherent linear detection with a linear
Minimum Mean Square Error (MMSE) channel estimate ob-
tained from the pilot. The achievable rate with partial feedback
increases as S logL, where S is the Signal-to-Noise Ratio
(SNR) and L is the coherence time in the number of channel
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uses.1

Without feedback the capacity of the channel considered is
achieved with impulsive (flash) signaling, and approaches S as
M →∞, independent of the coherence time L [4], [5]. Hence
there is a critical coherence time beyond which the partial
feedback scheme performs better than flash signaling. This
critical value depends only on the Rayleigh fading assumption,
and is independent of the system parameters (i.e., signal power,
noise variance, and variance of channel gains). In addition, the
probing bandwidth grows as S L

log2 L
.

Without feedback the achievable rate of the pilot-based
scheme as M → ∞ is strictly less than the rate achieved
with impulsive signaling (flash capacity). The former rate
approaches the flash capacity as L → ∞, although the gap
diminishes slowly at the rate SL−1/3. The optimal probing
bandwidth without feedback increases as SL1/3, which is
much slower than the optimal growth with feedback. With
feedback the transmitter therefore benefits from probing a
significantly larger number of sub-channels, even with the
increase in channel estimation error. We also show that the
preceding results apply with an additional peak power con-
straint on training. The main effect of this additional constraint
is to increase the optimized training length.

Our results without feedback are closely related to those
presented in [9], which specify how the bandwidth must scale
with L (for large L) to achieve a particular scaling for the
capacity. The order-scalings for achievable rate and number
of active sub-channels (bandwidth) in terms of the coherence
time given here for the pilot-based scheme are in fact the same
as the corresponding scalings derived in [9]. A difference is
that here we explicitly optimize a lower bound on the capacity
over bandwidth and training power for finite L. Those results
are then used to infer (somewhat more refined) scaling results
for large L.2

Other related work, which considers different channel mod-
els and objectives, has been presented in [10]–[16]. The
emphasis in [10], [11] is on designing a multi-channel probing
protocol, which balances power for probing against power for
data transmission. Other models, in which a priori knowledge
of channel statistics admit stochastic programming formula-
tions of optimal probing strategies (related to multi-armed
bandit problems) are presented in [12], [14], [15]. (See also
[16], which considers worst-case scenarios for such probing
strategies.) In all of the preceding references the relation
between number of probed channels and channel measurement
error is not taken into account. Also, in [10]–[12], [15], [16]
the data transmission is limited to one best sub-channel. (In
contrast, the focus of [14] is on the efficient use of feedback
during the training phase to decide whether to train or transmit
data, assuming binary symmetric sub-channels.) Here the
emphasis is on characterizing the optimal probing bandwidth
for a wideband fading channel taking into account the tradeoff

1This is consistent with observations in [8], which considers a similar type
of feedback scheme for a Rayleigh fading channel at low SNRs. For our
model we also characterize the second-order growth term.

2Similarly, our results with feedback characterize second-order scaling
behavior, in contrast with the first-order behavior presented in [8], which
analyzes a model with bursty (as opposed to periodic) training.

between probing bandwidth and channel estimation error.
The relation between wideband capacity and channel “spar-

sity” is studied in [13]. “Sparsity” refers to the number
of independent channel coefficients in the time-bandwidth
plane. The scaling for this number of coefficients with the
time-bandwidth product is determined so that the capacity
approaches that with perfect channel knowledge at the receiver.
(See also [17], which studies the tradeoff between diversity and
channel estimation error without feedback for sparse wideband
channels.) Finally, optimizing probing bandwidth to maximize
capacity is closely related to minimizing the energy-per-bit for
each active sub-channel, as introduced in [5]. (See also [18]
where the energy-per-bit objective is used to optimize a pilot
signal without feedback.)

In the next section we present the wideband channel model,
and in Section III we present the achievable rate performance
objective. Our main results are presented in Section IV, along
with numerical results **in Section V**, which compare the
asymptotic results with those for **systems with sizes that are
of practical interest.**

II. SYSTEM MODEL

The channel consists of a large number of parallel block
Rayleigh fading sub-channels, each representing a single co-
herence band. Each coherence block in time consists of L
channel uses. Hence if the transmitter transmits symbols over
the ith sub-channel, then the L×1 vector of received samples
across time is given by

Yi = hiXi + Zi (1)

where Xi is the vector of transmitted symbols, hi is the
sub-channel coefficient, assumed to be circularly symmetric,
complex Gaussian (CSCG) with zero mean and variance σ2

h,
and Zi is the vector of CSCG noise samples with covariance
matrix σz

2 I. The coherence blocks for all sub-channels are
assumed to be aligned in time, and the channel gains are i.i.d.
across all coherence blocks. We will omit the dependence on
the coherence time index for convenience.

To model a wideband system, we assume an infinite number
of sub-channels. We will see, however, that the transmitter
should always transmit on a finite subset of sub-channels. We
refer to those sub-channels (for a given coherence time) as
being “active”. The number of active sub-channels is N .

Because the receiver does not know the channel, a sequence
of T training symbols is transmitted for channel estimation
at the beginning of each coherence block. We therefore have
L = T + D, where D is the number of channel uses
reserved for data transmission. The input vector is therefore
X†i = [X†Ti X†Di], where XTi and XDi are T × 1 and D× 1
vectors of training and data symbols, respectively. Similarly,
the received and noise vectors can be partitioned as Y†i =
[Y†Ti Y†Di] and Z†i = [Z†Ti Z†Di] . The average powers during
the training and data phases are PT and PD, respectively, i.e.,
1
T

∑N
i=1 X†TiXTi = PT , 1

D

∑N
i=1E[X†DiXDi] = PD, and we

assume an average power constraint

αPT + (1− α)PD = P (2)
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where α = T/L is the fraction of the coherence time spent on
training. (We will subsequently introduce an additional peak
power constraint Ppk on each training symbol.)

Based on the training segment of the coherence block, the
receiver computes the Minimum Mean Squared Error (MMSE)
channel estimate ĥi, and uses that estimate for both feedback
and coherent detection. The feedback, to be described, occurs
between the training and the data transmission, and its duration
is assumed to be an insignificant part of the coherence time.

Denoting the channel estimation error as ei = hi − ĥi, we
can therefore rewrite the data segment of (1) as

YDi = ĥiXDi + eiXDi + ZDi (3)

where ĥi and ei are uncorrelated, zero-mean, CSCG random
variables. The error variance is therefore σe

2 = E(|hi|2) −
E(|ĥi|2). Since the sub-channel coefficients are independent,
the training power PT is divided equally among the N
active sub-channels, and the channel estimation is performed
separately for each active sub-channel. Hence the MMSE, or
error variance, is given by

σe
2 = σh

2 − σh4

(
T PT

σh2 T PT +N σz2

)
. (4)

For each active sub-channel i, the receiver feeds back
one bit, which indicates whether or not the channel estimate
exceeds a threshold t0. If |ĥi|2 > t0, then the transmitter con-
tinues to transmit data on the sub-channel, otherwise, the sub-
channel is idle. The data power PD is divided evenly among
the subset of active sub-channels on which data transmission
occurs. We note that for a given set of active sub-channels, this
uniform power allocation, corresponding to one-bit feedback
per sub-channel, typically performs quite close to the optimal
water pouring power allocation [6], [7].3

The choice of active sub-channels N should balance
the tradeoff between diversity and channel estimation error.
Namely, as N increases, the likelihood of finding a set of good
sub-channels increases, corresponding to increased diversity;
however, the training power per channel decreases, which
increases the channel estimation error. The optimal N , which
balances this tradeoff, depends on the channel coherence time.
As the channel coherence time L increases, more energy can
be allocated to training without decreasing the data rate. We
therefore expect the optimal N to increase with L.

III. ACHIEVABLE RATE OBJECTIVE

The transmitter is assumed to code over multiple coherence
blocks in frequency and time, so that from (3) the ergodic
capacity is given by

C = (1− α)
1
D

N∑
i=1

max
p(XDi|ĥi)

I(XDi; YDi|ĥi) (5)

Subject to:
N∑
i=1

Eĥi
[
tr(Qĥi

)
]

= PDD

3We also expect this to be true for the rate objective considered with
channel estimation error for large L. This is because it will be shown that the
(optimized) channel estimation error tends to zero as L→∞.

where p(XDi|ĥi) is the probability density of XDi given
ĥi, Qĥi

= E[XDiX
†
Di|ĥi], and tr(·) denotes the trace. The

input density, which maximizes the mutual information is
unknown; however, a lower bound is obtained by assuming
that p(XDi|ĥi) is Gaussian [19]–[21]. It can then be shown
that

I(XDi; YDi|ĥi) ≥ DEĥi

[
log

(
1 +

P (ĥi)|ĥi|
2

P (ĥi)σe2 + σz2

)]
.

(6)
(See [21], [22] for details.)

This lower bound is the achievable rate with a Gaussian
input distribution and a coherent linear receiver, which treats
the channel estimation error as additive noise. In particular,
the receiver does not attempt to improve upon the channel
estimate during the data reception period.

Substituting this lower bound on mutual information into the
capacity expression (5), we obtain the following lower bound
on capacity given power allocation P (ĥ),

C = (1− α)N Eĥ

[
log

(
1 +

P (ĥ)|ĥ|
2

P (ĥ)σe2 + σz2

)]
(7)

with power constraint Eĥ
[
P (ĥ)

]
≤ PD/N . Here we have

used the assumption that the channel estimate ĥ has the same
distribution for all N active sub-channels. We wish to optimize
this objective over the training power PT , data power PD,
fraction of training symbols α, and number of active sub-
channels N .

IV. OPTIMAL PARAMETERS

The lower bound (7) depends on the transmitter power
allocation. We consider two scenarios. In the first, the trans-
mitter uniformly distributes the power across all data symbols
(in time and frequency). That is, the transmitter does not
make use of feedback. In the second scenario, the transmitter
transmits with constant power only on sub-channels for which
the channel estimate |ĥi|

2
is above a threshold. We refer to

this as an on-off power allocation. Although the optimal power
allocation strategy, which maximizes (7), resembles water
pouring [23], the optimal on-off power allocation is simpler
to analyze and is known to achieve near-optimal performance
with perfect channel estimates [6], [7].

A. No feedback

Since the power is spread evenly over all data symbols,
P (ĥi) = PD/N for all i = 1, 2, . . . , N . Also, |ĥi|

2
has an

exponential distribution with mean

σĥ
2 = σh

2 − σe2 = σh
4

(
T PT

σh2 T PT +N σz2

)
. (8)

We write (7) as an integral, and substitute P (ĥi) = PD/N ,
where PD is given by (2), to obtain

Cnfb = (1−α)N
∫ ∞

0

log
(

1 +
(P − εT ) t

W

)
1
σĥ

2
e−t/σĥ

2
dt

(9)
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where εT = αPT is the average training power and W =
(P − εT )σe2 +N σz

2 (1− α).
The achievable rate in (9) depends on α, PT and N . Note

that for any permissible value of α and PT , as N → ∞,
Cnfb → 0. This is because increasing the number of active
sub-channels degrades the channel estimates. Similarily, for
any fixed N , Cnfb → 0 as α or PT approaches a boundary
value of the constraint set (e.g., α→ 0 or α→ 1). Hence we
can jointly optimize α, PT , and N to maximize Cnfb.

We begin by optimizing the training fraction α. Note from
(4) that σe2, and hence σĥ

2, depend on α only through εT .
This observation and the fact that N (1−α) log(1+ a

b+N (1−α) )
is a decreasing function of α for all positive a and b implies
that the integrand, and hence the integral, is maximized by
choosing the smallest possible α while keeping the average
training power εT fixed. Since at least one channel use is
needed for training, we must have α ≥ 1/L. In addition, we
impose a peak power constraint Ppk on each training symbol
over all sub-channels4 so that α ≥ εT /(NPpk), hence the
optimal training length fraction, given εT , is

α? = max
{

εT
NPpk

,
1
L

}
. (10)

Next we proceed to optimize N and εT . The lower bound
on capacity (9) can be further evaluated as

Cnfb = (1− α)N ex γ(x) (11)

where γ(x) =
∫∞
x

e−t

t dt is the zeroth-order incomplete
gamma function and

x =
(

1 +
N̄

ε̄TL

)(
1 +

N̄(1− α)
1− ε̄T

)
− 1. (12)

where we define the normalized training power and normalized
bandwidth 5 , respectively, as

ε̄T =
εT
P

N̄ =
N

S
, (13)

and where the average SNR S = Pσ2
h/σ

2
z . We also define

the peak SNR Spk = Ppkσ
2
h/σ

2
z . Note that the flash capacity

is Cfl = S, which is also the capacity with perfect channel
knowledge at the receiver [5]. With α given by (10), maximiz-
ing (11) with respect to N and εT is equivalent to maximizing
with respect to the normalized values N̄ and ε̄T . The optimal
values N̄? and ε̄?T and the corresponding optimized lower
bound on capacity C?nfb depend only on L and Spk. Clearly,
C?nfb ≤ Cfl.

Consider the special case in which the peak training power
is unbounded. If Spk → ∞, then α = 1/L. In that case, the
optimized parameters ε̄?T , N̄?, and the achievable rate C?nfb
depend only on L. To determine these functions we note that
ex γ(x) in (11) is a decreasing function of x and depends
on ε̄T only through x, defined by (12). Therefore the optimal

4We will see that the peak training power constraint can significantly effect
the optimized parameters. In contrast, adding a peak data power constraint
would not have much of an effect, since conditioned on the channel estimates,
each narrowband channel becomes an additive white Gaussian noise channel.

5**The inverse normalized bandwidth 1/N̄ = S/N can be interpreted as
SNR per degrees of freedom. That is, N̄ corresponds to 1/SNR in [8] and [9]
since in those works SNR refers to SNR per degrees of freedom.**

value of ε̄T minimizes x. The solution is given in terms of the
function

g(u) = −z + (z2 + z)1/2 (14)

where z(u) = (1− 1
L )u+1

L−2 . Namely,

ε̄?T (L) = g(N̄?) (15)

and
N̄?(L) = arg max

y

[
y ex

′
γ(x′)

]
where

x′ =
(

1 +
y(1− 1

L )
1− g(y)

) (
1 +

y

L g(y)

)
− 1.

We now examine the asymptotic behavior of the optimized
parameters for large L. Numerical examples for finite L
are presented in Section V. We use the following notation.
Suppose that limL→∞

f1(L)
f2(L) = c. If c = 0, then we write

f1 ≺ f2; if c ∈ [0, 1], then we write f1 - f2, and if c = 1,
then f1 � f2. Furthermore, the values ε̄T = ε̄aT (L) and
N̄ = N̄a(L) are called asymptotically optimal if

Cfl − Cnfb(ε̄aT , N̄a) � Cfl − C?nfb. (16)

That is, the capacity with the values ε̄aT and N̄a converges to
the flash capacity at the optimal (first-order) rate.

Theorem 1: As L→∞, if Spk satisfies

L - Spk, (17)

then the optimal parameters for the training scheme without
feedback satisfy

ε̄?T � 1
(2L)1/3

(18)

N̄? �
(
L

4

)1/3

(19)

and the corresponding achievable rate satisfies

Cfl − C?nfb �
3Cfl

(2L)1/3
. (20)

In addition, if 1
L1/3 ≺ Spk - L then the parameter values

given by (18) and (19) are asymptotically optimal.
The proof of the theorem follows essentially the same ap-
proach as the proof of Theorem 2 (given in Appendix A),
which applies to the scenario with feedback, and is therefore
omitted. We refer the reader to [22] for details.

The same scalings with L are inferred in [9] for the
capacity, but without the associated constants (i.e., in [9] it is
observed that the optimal bandwidth scales as L1/3, and the
gap in Eqn (20) decreases as 1/L1/3). Optimizing the lower
bound (7) therefore gives the somewhat more refined results
in the theorem. Our numerical examples in section V show
that the constants are important when estimating the optimal
parameters and performance for finite L. The proof also shows
that for 1

L1/3 ≺ Spk - L, the asymptotically optimal values
ε̄aT = (2L)−1/3 and N̄a = (L/4)1/3 satisfy the stationarity
conditions as L becomes large, that is,

lim
L→∞

∂Cnfb
∂ε̄T

| ε̄T=ε̄a
T

N̄=N̄a
= lim
L→∞

∂Cnfb
∂N̄

| ε̄T=ε̄a
T

N̄=N̄a
= 0. (21)
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The theorem specifies the first-order growth rate of the
optimized bandwidth, training power, and achievable rate with
L provided that Spk does not tend to zero faster than L−1/3.
(This includes the important cases in which Spk is constant, or
increases with L.). From (20), the gap between the achievable
rate for the training scheme and the flash capacity without
feedback approaches zero slowly as L−1/3. From (18) the
optimized training power εT → 0 as L → ∞. The training
energy per subchannel is εTL/N , and combining this with the
asymptotic growth for N in (19) shows that that the training
energy increases as L1/3, independent of peak training power.
Furthermore, the channel estimation error σ2

e = σ2
h − σ2

ĥ
→ 0

as L−1/3. Interestingly, the theorem implies that this remains
true if Spk → 0 more slowly than the optimized data power
per subchannel, given by PD/N , which decreases as L−1/3.

Although the choice of Spk does not effect the first-order
behavior of the optimal training power, bandwidth or capacity,
it does influence the optimal training length given by (10).
Hence with ε̄T and N̄ given by (18) and (19), if L1/3 -
Spk then α = 1/L, corresponding to a training length of one
symbol. For smaller peak powers in the range L−1/3 ≺ Spk -
L1/3, the training length is larger than one. From (10), with
fixed Spk the optimized training length α?L increases as L1/3,
and increases faster if Spk decreases with L. Namely, α?L
increases as L2/3 if Spk decreases at a rate close to L−1/3.

For large Spk (such that α = 1/L) the first-order rela-
tions given in the theorem provide accurate estimates of the
corresponding optimal parameters, even for relatively small
coherence times L. However, for smaller values of Spk the
second-order terms can be non-negligible, so that L must be
much larger for the first-order values to be accurate. These
asymptotic trends are illustrated by the numerical results in
Section V.

B. Partial Feedback

The feedback is used to specify the on-off power allocation

P (ĥi) =

{
P0 if |ĥi|

2
≥ t0

0 otherwise

which requires one feedback bit per subchannel per coherence
block. From (7), the lower bound on ergodic capacity is

Cfb = (1−α)N
∫ ∞
t0

log
(

1 +
P0 t

P0 σe2 + σz2

)
f(t) dt (22)

with the power constraint∫ ∞
t0

P0f(t)dt =
PD
N

where f(t) = 1
σĥ

2 e
−t/σĥ

2
. This can be rewritten as

Cfb = S(1− α)N̄e−t̄0θ
[

log
(

y

y − t̄0θ

)
+ eyγ(y)

]
(23)

where

y = θ

[
1 +

N̄ (1− α)
1− ε̄T

e−t̄0θ
]
− 1 + t̄0θ (24)

ε̄T and N̄ are defined by (13), θ = 1 + N̄/(ε̄TL), and the
normalized threshold t̄0 = t0/σ

2
h.

We wish to maximize Cfb with respect to the training
fraction α, normalized training power ε̄T , normalized band-
width N̄ , and on-off threshold t̄0. Following an argument
analogous to that given in the preceding subsection, it can
be shown that for a given optimized training power ε̄T
the optimal training length is again given by (10), where
εT /(NPpk) = ε̄T /(N̄Spk). The optimized values ε̄?T , N̄?,
t̄?0 and resulting lower bound C?fb are functions of L and
Spk only. We emphasize that N? is the total number of
subchannels probed with pilot symbols. Data is transmitted
only on the subset of N? channels with estimated channels
gains |ĥi|2 ≥ t?0. In contrast, with no feedback data is
transmitted on all N? subchannels. Although it appears to be
difficult to evaluate the preceding optimal system values in
closed-form, it is straightforward to evaluate them numerically.
Examples will be discussed in Section V.

We now present the asymptotic behavior of the optimized
parameters and the corresponding achievable rate for large co-
herence times. We then compare those results to the analogous
results without feedback. Similar to the case without feedback,
we say that N̄ = N̄a(L), ε̄T = ε̄aT (L), and t̄0 = t̄a0(L) are
asymptotically optimal if they satisfy the following condition,

Cfb(ε̄
a
T , N̄

a, t̄a0) � C?fb. (25)

That is, the capacity with the values ε̄aT , N̄
a and t̄a0 has the

optimal (first-order) growth rate with L. In contrast to the
case without feedback, here the capacity grows without bound
as L → ∞. Hence we wish to characterize the first-order
growth of the capacity, as opposed to the convergence rate to
a constant.

Theorem 2: As L→∞, if Spk satisfies

L - Spk, (26)

then the optimal parameters for the training scheme with
feedback satisfy

N̄? � L

log2 L
(27)

ε̄?T � 1
log N̄?

(28)

and the corresponding achievable rate satisfies

C?fb � S log N̄?. (29)

Moreover the optimal threshold is

t̄?0 = log N̄? − (1 + δ) log log N̄? + o(log log N̄?) (30)

where δ ∈ (0, 1) is given by δ = log v
log log N̄?

− 1 and v satisfies

log
(

v

v + log(N̄?/v)

)
=

v exp
(
v + log(N̄?/v)

)
γ
(
v + log(N̄?/v)

)
. (31)

In addition, for log2 L
L ≺ Spk - L the parameter values given

by (27), (28) and (30) are asymptotically optimal.
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The proof is given in Appendix A.6 There it is also shown
that for log2 L

L ≺ Spk - L, the asymptotically optimal values
ε̄aT , N̄a and t̄a0 given by (28), (27) and (30), respectively,
satisfy the analogous stationarity conditions as L becomes
large to those given by (21) without feedback.

The theorem states that the lower bound on capacity grows
as logL, in contrast to the corresponding lower bound without
feedback, which is upper bounded by the flash capacity
(a finite constant). Hence for large coherence times, partial
feedback provides a substantial gain in achievable rate. The
asymptotic growth with feedback is enabled by the optimal on-
off threshold t?0, which allows the average number of subchan-
nels above the threshold, Ne−t0/σ

2
ĥ , to grow approximately as

(logN)1+δ , where the constant δ in (30) is small and positive.
As in the case without feedback, the training energy per

subchannel εTL/N increases as logL independent of Spk.
The average training power ε?T � P/(logL) is much larger
with partial feedback than without; however, the bandwidth
N? � SL/(log2 L) is also substantially larger so that the
training energy per active sub-channel εTL/N grows as logL,
as opposed to L1/3 without feedback. Correspondingly, the
channel estimation error with feedback goes to zero at a slower
rate of 1/ logL. However, the loss in rate due to the larger
estimation error is offset by the diversity gain from the on-off
power adaptation and larger bandwidth. For these results to
hold the optimized training power can be almost as small as
the optimized data power per subchannel, given by PD/N ,
which decreases as (log2 L)/L.

With the exception of training length the first-order behavior
of the optimal parameters does not depend on Spk provided
that log2 L

L ≺ Spk. From (10) if logL - Spk, then α = 1/L,
corresponding to a training length of one symbol. For smaller
peak powers in the range (log2 L)/L ≺ Spk - logL,
the optimal training length is larger than one. The training
length grows as logL with fixed Spk, and can be as large as
L/(logL) if the peak power is close to (log2 L)/L. Given
a fixed Spk, the optimized training length grows much more
slowly with partial feedback (as logL), than without feedback
(as L1/3).

For finite L the asymptotic estimates become more accu-
rate as Spk increases. The second-order terms can become
significant for small values of Spk. From (27) we can replace
the probing bandwidth N̄? by L in the remaining asymptotic
expressions. However, the asymptotic expressions more accu-
rately predict the corresponding values for a finite size system
when stated in terms of N̄?.

V. NUMERICAL RESULTS

Here we present numerical results obtained by directly
optimizing α, ε̄T , N̄ , and t̄0 in (11) and (23) with finite
values for L and Spk. Figs. 1-3 show plots of N̄?, ε̄?T , and
t̄?0, respectively, versus L. Fig. 4 shows the corresponding

6Related results are presented in [8] for a wideband model in which the
training can occur after arbitrary delays and with arbitrary peak power. It is
shown there that the capacity scales as S logL and the optimal bandwidth
scales sub-linearly with L. For the pilot-based scheme considered here,
Theorem 2 states that the achievable rate grows as S logL−O(log logL).

normalized capacity C̄?nfb/Cfl. All figures show results with
Spk = 10, 0, and -5 dB.

As the coherence time L increases, we can obtain more
accurate channel estimates with less training power per sub-
channel. Hence the optimal training power decreases with
coherence time, and the optimal number of active sub-channels
increases. This allows for an increase in data power and
number of subchannels used for data transmission, and hence
the capacity increases with L. The threshold with feedback
also increases, so that a smaller fraction of sub-channels with
larger gains are activated. Fig. 1 shows that even for moderate
L, N̄? with feedback is many times larger than N̄? without
feedback.

The figures show that N̄?, ε̄?T , and C̄?nfb are insensitive
to Spk both with and without feedback. (In fact, they almost
overlap for the different values of Spk shown.) This is con-
sistent with Theorems 1 and 2, since Spk does not affect the
first-order growth rates.

As stated in Theorem 2, the achievable rate with feedback
asymptotically increases as logL, whereas the corresponding
rate without feedback approaches Cfl. Hence there exists a
critical coherence time Lcrit for which C?fb > Cfl when
L > Lcrit. Solving this numerically gives Lcrit ≈ 120, which
is independent of the system parameters, and is insensitive to
variations in Spk. Hence for the block i.i.d. Rayleigh fading
model, if the coherence time of the channel exceeds 120
channel uses, then the partial feedback scheme considered
achieves a higher rate than the optimal impulsive signaling
scheme without feedback, irrespective of the channel variance,
noise variance, and average power constraint. If the channel
coherence time is less than 120 channel uses, then this
feedback scheme (with Gaussian codewords) does not achieve
as high a capacity as impulsive signaling without feedback.

Also shown in the figures are the values obtained through
asymptotic analysis. The values without feedback, from (18)-
(20), are quite close to the actual optimized values. The
asymptotic values of ε̄?T and t̄?0 with feedback shown in Figs.
2 and 3 are given by (28) and (30), respectively. However,
instead of using the asymptotic expression (27) for normalized
bandwidth N̄?, we use the more accurate value (obtained in
Appendix A) given by the solution to L(log N̄?)2 = N̄?. The
asymptotic capacity in Fig. 4 with feedback is obtained by
computing (23) at those parameter values. Note that the effect
of the training fraction α (and hence Spk) on this asymptotic
value is negligible since α is small for the cases considered.
These plots show that the asymptotic values are accurate
estimates of the corresponding optimal parameters for finite
coherence times. An exception is the optimal on-off threshold,
although the asymptotic trend is evident for small L.

VI. CONCLUSIONS

We have considered a time- and frequency-selective wide-
band channel with pilot-assisted training and feedback. The
performance of this scheme, relative to the performance of
impulsive, or flash signaling without feedback, depends crit-
ically on the coherence time L. Namely, for the block i.i.d.
Rayleigh fading channel model, the capacity with the one-
bit feedback scheme considered grows as logL when L is
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large, and surpasses the capacity without feedback when L
exceeds 120 channel uses. As L becomes large, our results also
show that the overhead (fraction of available power) devoted
to training for channel estimation decreases to zero. However,
the rate of decrease is sufficiently slow so that the training
energy per sub-channel increases as logL, and the channel
estimation error tends to zero as 1/ logL. Of course, other
fading distributions can be analyzed within the framework
presented, and may lead to different trends.

The model and results presented here can be extended in
a few different directions. For example, although the on-
off feedback scheme considered is known to have optimal
properties [6], [7], an open question is whether or not other
finite-rate feedback schemes can achieve higher capacities
(e.g., see [24], [25]). Also, our model has assumed that
the channel gains are i.i.d. across both frequency and time.
A natural extension of this work is to consider a dynamic
scheme for allocating training and data power with correlated
fading (e.g., see [26], which optimizes training power for a
narrow-band channel with correlated fading). An extension
of this model to a multiple access channel, motivated by
dynamic spectrum sharing applications, is studied in [27].
Finally, we have assumed that the transmitter codes across
several coherence blocks so that our objective is the ergodic
rate. A similar trade-off between channel estimation error and
diversity could also be studied with outage capacity as the
objective (e.g., see [28]).
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Fig. 1. Optimal normalized probing bandwidth N̄? with and without
feedback versus the coherence time (from (45) and (19), respectively). Curves
are shown for peak power values Spk = 10dB, 0dB,−5dB.

APPENDIX A
PROOF OF THEOREM 2

We wish to optimize Cfb in (23) over ε̄T , N̄ , and t̄0, and
consider the asymptotic limit L → ∞ where L - Spk. In
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addition, we assume that the optimal parameters satisfy
(A1) ε̄T → 0, N̄ →∞, and, N̄

ε̄TL
→ 0.

(A2) t̄0 →∞, N̄e−θt̄0 →∞ and, t̄0 ≺ N̄e−θt̄0 .
We will later verify that these assumptions are in fact necessary
conditions for optimality. For this range of peak powers, since
ε̄T

N̄Spk
< 1

L , we have α = 1
L . Setting the partial derivatives

of Cfb with respect to N̄ , ε̄T , and t̄0 to zero, and using
assumptions (A1) and (A2) gives the necessary conditions

1
1− ε̄T

� (1− ε̄T )
ε̄2TLθe

−t̄0θ

[
1 +

N̄e−t̄0θ

1− ε̄T

]
(32)

− log
(

y

y − t̄0θ

)
� θN̄e−t̄0θ

1− ε̄T

[
eyγ(y)− 1

(y − t̄0θ)

]
(33)

− log
(

y

y − t̄0θ

)
+
(
θN̄e−t̄0θ

1− ε̄T

)
1

(y − t̄0θ)
�

N̄

ε̄TL

[
1 +

N̄e−t̄0θ

1− ε̄T

]
log
(

y

y − t̄0θ

)
. (34)

Combining (33) and (34) with (A1) and (A2) gives

eyγ(y) � N̄

ε̄TL
log
(

y

y − t̄0θ

)
. (35)

Furthermore, (32) reduces to

ε̄2TL � N̄ . (36)

Define the threshold in terms of the variable v as

t̄0 =
1
θ

log
(
N̄

v

)
(37)

so that

y = θ

[
1 +

v(1− α)
(1− ε̄T )

]
−1+log

(
N̄

v

)
� v+log

(
N̄

v

)
. (38)

To satisfy (33), we can choose v to satisfy

log
(

v

v + log(N̄/v)

)
= v exp(v+log(N̄/v))γ(v+log(N̄/v)).

(39)
It can be shown that the solution to (39) has the form v =
(log N̄)1+δ where δ ∈ (0, 1). Also, from (A1) we have N̄

ε̄TL
→

0 which implies θ → 1. Combining these, (37) implies that
the optimal threshold satisfies t̄0 � log N̄ .

Using the fact that t̄0/y → 0 (from (A2)) and γ(y) can be
expanded as

γ(y) = e−y
[

1
y
− 1
y2

+
2
y3
−O

(
1
y4

)]
, (40)

we can simplify (35) to

1
y
− 1
y2

+O

(
1
y3

)
� − N̄

ε̄TL
log
(

1− t̄0θ

y

)
(41)

⇒ 1
y
� − N̄

ε̄TL

(
t̄0θ

y

)
(42)

⇒ ε̄TL

N̄
� t̄0. (43)

Finally combining (36) and (43) we have

ε̄T �
1
t̄0

(44)

L

log2 N̄
� N̄ , (45)

which gives the optimal asymptotic relations for ε̄T and N̄ in
(27) and (28). Substituting those relations into (37) gives the
optimal threshold (30).

To compute the growth rate for the capacity, we rewrite Cfb
in (23) as

S(1− α)N̄e−t̄0θ
[
− log

(
1− t̄0θ

y

)
+

1
y
− 1
y2

+O

(
1
y3

)]
.

(46)
Substituting the asymptotic values for the optimal parameters,
we have

Cfb = −S(1− α)N̄e−t̄0θ log
(

1− t̄0θ

y

)
+ S − o(S)

= −SN̄e−t̄0θ log
(

1− t̄0θ

y

)
+ S − o(S)

= −Sv log
(

1− t̄0θ

y

)
+ S − o(S)

= Sv

[
t̄0θ

y
+O

[(
t̄0θ

y

)2
]]

+ S − o(S)

= S log N̄ + o(log N̄). (47)

Now we show that (A1) and (A2) are necessary for opti-
mality. Using (22), we can bound the achievable rate as

S N̄e−t̄0θ log
(

1 +
(1− ε̄T )t̄0
1 + N̄e−t̄0θ

)
≤ Cfb

≤ S N̄e−t̄0θ log
(

1 +
(1− ε̄T )(t̄0 + 1)

N̄e−t̄0θ

)
, (48)
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where the upper bound follows from Jensen’s inequality and
the fact that

∫∞
t0
tf(t)dt ≤ t0 + σ2

h. Recall that we have ε̄T ∈
[0, 1] and θ ≥ 1. If the optimal N̄ is bounded from above as
L→∞, then irrespective of the choice of ε̄T and t̄0, the upper
bound in (48) is always less than a constant. This contradicts
the fact that the capacity is unbounded as L → ∞ (as in
(47)) when N̄ satisfies (27). We therefore conclude that the
optimal N̄ →∞ as L→∞. Furthermore, given that N̄ →∞,
choosing the threshold such that t̄0 →∞, N̄e−t̄0θ →∞ and

t̄0
N̄e−t̄0θ

→ 0 simultaneously maximizes the lower and upper
bounds in (48) and hence maximizes the achievable rate.

If ε̄T ≥ ε̄0 > 0, then by computing the value of t̄0,
which maximizes the upper bound in (48), and substituting
this value into the corresponding capacity lower bound, we can
show that the maximum achievable growth rate for capacity is
S(1− ε̄0) log N̄ as N̄ →∞. This is less than the asymptotic
achievable rate in (47), which shows that a pre-log N̄ factor
of S can be achieved. To maximize the asymptotic achievable
rate we must therefore have ε̄T → 0 as L→∞.

Similarly, using the bounds in (48) we can show that if
N̄
ε̄TL
≥ κ > 0, then the maximum achievable growth rate for

capacity is S
(1+κ) log N̄ . Again the pre-log factor is less than

the achievable factor of S, so that we must have N̄
ε̄TL
→ 0.

We have therefore established that (A1) and (A2) are
necessary conditions for optimality. Hence (37), (28), (27) and
(47) give the first-order asymptotic growth rates of the optimal
parameters and the capacity when the peak power satisfies
L - Spk. In addition, since we obtain a unique solution to
the optimality conditions, the results correspond to the global
maximum.

Next we show that the parameter values (27), (28) and
(30) are asymptotically optimal when the peak training power
lies in the range log2 L

L ≺ Spk - L. From (27), (28) and
(30), the optimal training fraction α given by (24) is 1

L if
logL ≺ Spk - L and is logL

LSpk
if log2 L

L ≺ Spk - logL.
Substituting these values of α and the optimal parameters
into (46) shows that the capacity Cfb satisfies the first-order
behavior in (47). Since Cfb is an increasing function of Spk,
the growth rate as L → ∞ in (47), which corresponds to an
infinite Spk, is the best achievable. Hence we conclude that
selecting the parameters in (27), (28), and (30) satisfies the
asymptotic optimality condition (25) when log2 L

L ≺ Spk - L.
This proves the theorem.

Furthermore, if Spk satisfies log2 L
L ≺ Spk - L, then it is

easy to show that (27), (28) and (30) imply − ∂α
∂ε̄T

C−α ∂C
∂ε̄T
≺

∂C
∂ε̄T

, − ∂α
∂N̄
C − α ∂C

∂N̄
≺ ∂C

∂N̄
, and − ∂α

∂t̄0
C − α ∂C∂t̄0 ≺

∂C
∂t̄0

. It is
then easy to verify that the conditions (32)-(34) are satisfied,
which establishes that the analogous stationary conditions to
(21) are satisfied for Cfb.
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