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Abstract—We consider data transmission through a time- in time, adapting the pilot power with the estimated channel

selective (correlated) flat Rayleigh fading channel under an state can increase the achievable rate.
average power constraint. The channel is estimated at the recedr

with a pilot signal, and the estimate is fed back to the transmitter. We start with a correlated block fading model in which
The estimate is used for coherent demodulation, and to adapt the the sequence of channel gains is Gauss-Markov with known

data and pilot powers. We start with a block fading channel in L h . L
which the channel gain changes according to a Gauss-Markov statistics. The channel estimate is updated at the begjrofin

process. The channel estimate is updated during each coherenceach block using a Kalman filter, and determines the power
block with a Kalman filter, and optimizing the data and pilot for the data, and the power for the pilot symbols in the

powers is formulated as a dynamic program. We then study a succeeding coherence block. We show that optimal power
continuous limit in which the coherence time tends to zero, and ;ntrol policies are specified implicitly through a Bellman

the correlation between successive channel gains tends to oneé fi 101. Other d . ing f lati f
so that the channel process becomes a diffusion process. In this quation [10]. er dynamic programming rormuiations o

limit it is shown that the optimal pilot power control policy is POwer control problems have been presented in [11]-{14],
“bang-bang”, i.e., depending on the current system state (chmel although in that work the channel is either known perfectly

estimate and associated error variance) the pilot power is either (perhaps with a delay), or is unknown and not measured.
the maximum allowable, or zero. The associated regions of the

state space are illustrated numerically for specific system values. Because an analytical solution to the Bellman equation
This example shows that the achievable rate with the optimized 555645 10 be difficult to obtain, we study a continuous limit
training policy provides substantial gains relative to constant . hich the ch | coh fi block | th. tend
training power at low SNRs. in which the channel coherence time, or block length, tends
to zero, and the correlation between successive blocks tend

|. INTRODUCTION to one. In this limit, the Gauss-Markov channel becomes a

The achievable rate for a time-selective fading channgpntinuous-time Omstein-Uhlenbeck process [5], and e B
depends on what channel state information (CSI) is availagNan equation becomes a partial differential equation (PDE)
at the receiver and transmitter. Namely, CSI at the receiv@r diffusion equation is also derived, which describes the
can increase the rate by allowing coherent detection, arid c@golution of the state (channel estimate and the associated
at the transmitter allows adaptive rate and power contrgl (e €TOr variance), given a power allocation policy. In thisi
see [1, Ch. 6]). Obtaining CSI at the receiver and/or tratismi W€ ShOW that.g|ven a peak power pon'stralnt for the plloF power
requires overhead in the form of a pilot signal and feedbackie optimal pilot power control policy is *bang-bang™: thitgp

We consider a time-selective flat Rayleigh fading channélOWer is either the maximum allowable or zero, depending
which is unknown at both the receiver and transmitter. TR#0N the current state. Also, the optimal data power control
transmitter divides its average power between a pilot, usB@licy is found to be a variation of waterfilling [1].

to estimate the channel at the receiver, and the data. Giver-‘-he boundary of the state space, which specifies the op-
an average tr_ansmitted power constraint, our problem is g, pilot power control, can be obtained by solving the
optimize the instantaneous pilot and data powers over tb@rresponding PDE. This problem falls into a classfie

cr?annﬁ! reaglzatlon. Osl'” ?bjecnvti functr:on |Sba lower b@g" cgoundary problem$6], [7], for which obtaining a numerical
the achievable rate. Similar problems have been considere olution is challenging. We reformulate this problem as a

previous v;(_)rk, ehg., [hZ]; h0\|/veve|r, our model dllfferzm thl( variational inequality [7], which can be solved numerigall
respects. .|rslt,t € channel evolves asacorre.ate roc S a quadratic optimization problem. This technique is used
known statistics. Second, the estimated CSl is assumed totabecompare achievable rates with the optimal pilot power
available at the transmitter (i.e., through a noiselesdlidfaek control policy with constant pilot power for a particulart o4

chann_el). The transmitter uses this CSI to control the dalgeiam parameters corresponding to fast fading. Our Eesult
and pilot powers. Namely, because the channel is correla

w that the optimal policy offers substantial gains at low
This work was supported by the U.S. Army Research Office undantg SNRS. I_:urthermore, th_|s improvement increases as the ehann
DAAD19-99-1-0288 and NSF under grant CCR-0310809 correlation increases (i.e., the channel varies more glowl



Il. CORRELATEDBLOCK FADING MODEL lower bound on ergodic capacity as the performance obgctiv

31, [4)

We start with a block fading channel model in which eac
coherence block containd/ symbols, consisting of’ pilot . P j;
symbols andD data symbols. The vector of channel outputs R(Pi, i, 0;) = log (1 + W) (®)
for coherence block is given by

yi=hy < VFirsir > + z; 1)

\/E‘Si

whereji; = |h;|2.
IIl. DYNAMIC PROGRAMMING FORMULATION

where s, ands; are, respectively, vectors containing the The pilot and data power control problem can be stated as

pilot and data symbols, each with unit variance, aRgdr

and P; are the associated pilot and data powers. The noise e = R

z; contains circularly symmetric complex Gaussian (CSCG) {%if} hnrglorcl,f ﬁE ZR(P“M“QZ')

random variables, and is white with covarianeél. The o =0 -

channel gain; is also CSCG, is constant within the block, subject to:lim [1 Z €+ 1 Z P
n— oo n

9)
. S P(L?)
and evolves from block to block according to a Gauss-Markov

. i=0 i=0
process, l.e.,

where the expectation is over the sequence of channel gains.
hivi=rhi +vV1—1%2w; (2) This is a discrete-time Markov control problem, and the
solution can be formulated as a dynamic program. The system
where w; is an independent CSCG random variable WitBiate at time (blocky is S; = (ji;, 0;), and the action maps
mean zero and variancg,?, andr € [0,1] determines the the state to the power pai;, ¢;1). To see thatS; is the
correlation between successive blocks. We will assumerthagystem state, note that,;; and h; are independent random
ando}, are known at the receiver. variables, hence it follows from (3) and (4) that the probgpbi
The training energy per symbol in blockis defined as gjstribution of S;,1 is determined only byS; and the action
€ = aPyr, wherea = T/M. In what follows, it will be ¢, | The proces§(ji;,6;)} is therefore a Markov chain driven
convenient to writeP;.; ase;/a. by the control{e; }.
The receiver updates the channel estimate during eachrne average power constraint in (9) can be included in the

coherence block with a Kalman filter [8], using the piloppjective through a Lagrange multiplier giving the relaxed
symbols, and relays the estimate back to the transmittgfoplem

The feedback occurs between the pilot and data symbols,
and is assumed to occupy an insignificant fraction of the

coherence time. The channel estimateand estimation error (Bax, im. EE Z [R(Pi, f1;,0;) — A (e + Pi)] | (10)

n—1

0; = E(|h:|?) — E(|hs]?) evolve according to the following =0
updates: where )\ is chosen to enforce the constraint (9). If there exists
- a bounded functiorV/(j1,0) and a constanC, which satify
hiyi = rhi+gis1y %Teiﬂ\i +git18{i1,r2i+1(3)  the Bellman equation
9 0z2 07?+1\i (4) V(/Al'v 0) +C = I(I}_)a‘}){ [R(Pa Ia7 9) - A (6 + P) + E@(ﬂﬁ) [V]] )
B € MO + 0.7 ’ (11)
where then an optimal policy maximizes the right-hand side [10le T
function V (-, ) is called an “auxiliary value function”, an@'
o & 0 ) is the maximum value of the objective in (10). The expectatio
gi = a 0,2 E. (u,0)[] is over the conditional probability density &f; ,;
Civrji = hiv1— rh (6) given_SZ- = ({1,0) and actione; 1 = € . . .
O = 120+ (1—12) 0p2 7 Using the channel state evolution equations derived in
il = T ") Oh Section I, we have
It is straightforward to show that the channel estimaten 0
(3) does not depend dfi. Hence the data rate is maximized EeaolV] :/0 V(u,0(i11)) fr(u)du (12)
by lettingT" — 0 with fixed¢; (i.e., the training poweP;.r — )
00). where f,.(u) is the conditional density ofi;+1 = |hit1|?

We wish to determineP; and ¢;, which maximize the given S; = (4;,60;) = (,60), and 6,1 is given by (4)
achievable rate. Specifically, the channel estimateand with 6; replaced by#. From (3) it follows that f,(u)
variancef); determine the data powé? and the pilot power in is Ricean with noncentrality parametefi and variance
the nextcoherence block; ;. We assume that the transmittef(6;1,cM)/c2]0; 1 + r*fi, wheref;; and 6, ; are given
codes over many coherence blocks, and use the followiby (4) and (7), respectively, with; replaced by.



IV. DIFFUSIONLIMIT Analogous to (11), the Bellman equation can be written as

The Bellman equation (11) is an integral fixed point equa- C = max [R(P,1,0) — X (e+ P) + AV (,0)]]  (18)
tion, and appears to be difficult to solve analytically. Tanga (Pre)
insight into properties of optimal policies, we consider ahere A, is generator of the state proce§s(t),6(t)) with
diffusion limit in which M = dt, r = 1— p(dt), andét — 0. pilot powere(t) [5], and is given by
That is, the coherence time goes to zero, and the correlation E[aV]
between adjacent coherence blocks goes to one at a specific AlV] = — = +eb (29)
rate determined by.

In this limit, it can be shown that the discrete-time, comhere

plex, Gauss-Markov procesg#; }, described by (2), converges _ v 9, oV 90 + 290 2 20
weakly to a continuous-time Ornstein-Uhlenbeck diffusion “ o [=2pit] + o0 [ PU 2P0 } (20)
processh(t) (e.g., see [9, Ch. 8]). Furthermore, the limiting 62 [0V oV = 9*V

channel process satisfies the stochastic differential teua b= o2 | op 00 T i (21)
(SDE)

and the dependence onis omitted for convenience. Here we
dh(t) = —ph(t) dt +/2poy, dB(1) (13) ignore existence issues, and simply assume that theres exist

where B(t) is complex Brownian motion, and we assquO‘%”d?d’ continuous, and twicg diffe_rentiable funciop, -)
that the initial stateh(0) is a CSCG random variable with satisfying (18). Note thaV’(-,-) is unique up to a constant
zero mean and variance;. This is a stationary Gauss-[10:

Markov process, which is continuous in probability, and has Theorem 1:Given a I|m|tz_at|on on the peak p'lot POWET, 1.€.,
autocorrelation function e € [0, emaz], the optimal pilot power control policy is given

by
O(7) =g 2e P 14 v | €maz TO—XA>0
(1) =on (14) “=10" ifv-r<o, | _(22)
wherer is the lag normalized by the symbol duration. Hence In words, the optimal pilot power control policy is bang-
p determines how fast the channel varies relative to the symt@ng. This follows immediately from substituting the gexter

rate. A, given by (19)-(21), into (18), i.e.,
_ In the diffl_Jsion limit considered, _the Kalman filter con- C = f(f,0,)) + max[a + e(b — \)] 23)
tinuously estimates the channel during each symbol, and the €

pilot and data powers are continuously updated. The chanaglere f(i1,6,\) = maxp [R(P,fi,60) — AP]. Substituting

estimate and estimation error updates given by (3) and (§2) into (23) gives the final version of the Bellman equation
respectively, become the dynamical equations

C=f(1,0,\) +a+ €maz(b—N)7T (24)
R N t R
dh(t) = [—P h(t) + 9(’5)2(*2) (h(t) = h(t))| dt where (z)* = max{0, z}. We remark that an alternative way
i to arrive at (23) and (24) is to pass the discrete-time Bellma
et)| = equation (11) through the continuous-time limit.
+ |00 0,2 dB(t) (15) It is easily shown that the optimal data power allocation is
do(t) e(t)62(t) ) Pt = argmax[R(P, ji,0) = AP] (25)
—= = =2p0(t) - ——5 = +2poy (16) N
dt 0. B (—)\az2(29—|—,&) +\/Z> (26)
where B(t) is a complex Brownian process independent of 2X0(f1 +0)

B(t), ande¢(t) is the pilot power at tjmet. Furthermore, an yhere A = )2 (20,4 44X i200.2 + 40%7)0.%. Note that

SDE defining the evolution ofi(t) = |A(t)|* can be obtained p+ -  for i > \s,2. Finally, A determinesP,, in (17). We

through an application of Ito’s lemma [5]. note that this power allocation is the same as that obtained
If the average data power at tiniés P(¢), then the achiev- jn [15], which considers a fading channel with constant

able data rate corresponding fdt) is R[P(t),i(t),0(t)], estimation error, as opposed to the time-varying estimatio
whereR(-) is given by (8). Our problem is to choos&) and error in our model.

P(t), given the staté/i(t),0(t)), to maximize the achievable

data rate averaged over the channel prodéss Analogous V. BEHAVIOR OF THE OPTIMAL POLICY
to (9) we have the continous-time control problem The boundary of the region, which defines the optimal pilot
. power control policy, hereafter called “free boundary'imans
max liminf EE {/ R(p(t),ﬂ(t)’g(t))dt} to be determined. Nevertheless, we can make the following
(P(t),e(t)) t—oo 0

17) observations.
. . 1/t 1/t Fig 1 illustrates the optimized pilot power control policy.
subject to'tlirgo L/O et)dt + f/o P(t) dt] < Fow The vertical and horizontal axes correspond to the channel



estimatej: and estimation error variangg respectively. The VI. NUMERICAL SOLUTION TO FREE BOUNDARY
shaded regionD., is the region of the state space in which PROBLEM

€ = €maz, aNde = 0 in the complementry regio),. These A Optimization Formulation

two regions are separated by the free boundar;,. The
penalty factor\ determines the position of this boundary, ang
the associated value @t,,.

Solving the free boundary PDE (24) includes specifying the
omain associated with the contkok ¢,,,... Because of this,
i i i i none of the standard numerical methods for solving PDEs can
The vertical line A’A” in the figure corresponds to thepe girectly applied due to the absence of boundary condition
estimation error variancé*, which results from taking = Heare we show how to obtain a solution numerically by re-

¢maz for all ¢. Clearly, in steady state the estimation errofymyjating the problem as a large scale quadratic program.
variance cannot be lower than this value, hence the steatly-s e first observe that (24) can be written as the variational
pdf of the statd ., 0) is zero ford < 6*. Substitutings = €4, inequality [7]

in (16) and setting? = 0 gives 6* = (\/1+ 202y — 1)/

wherey = €maz/(po?). C-—f-a>0

Suppose that the initial state is iPy. With e(t) = 0 C—f—a—é€naz(b—A) >0
the equations (15) and (16) beconi#(t) = —ph(t)dt and (C—f—-a)(C—f—a—€ma(db—A)=0 (27)
do(t)/dt = —2p(6(t) — o). This implies that the state

trajectory is a straight line towards the poidt until it hits A Solution to (27) is a solution to (24) and vice versa. Now
the free boundary, as illustrated in Fig. 1. If it hits theefreconsider the following optimization problem,

boundary below the poinB, then it is pushed back int®,. i R 9 9 )
Otherwise, it continues intd), and settles along the line™™ “’0/“1 2 ded‘“rz Wa / [(Oz1)” + (Dw2)*] dOdfs
A’A”. For a discrete state space with small, positivethe eeX

state trajectory zig-zags around the boundary, as shown in

. . . ) : —f—a= >
Fig. 1. Hence if the free boundartC' intersectsA’A” at Subjectto: €= f—a=u 20

point B, then in steady state, the probability mass must be U1 — €maz (b —A) =uz >0 (28)
concentrated along the curw&/BC. In the continuous-time \yhere ,4; — uidy for 2 € X = {f,0} andi = 1,2. If
limit, thls_suggests that the probability associated witites w, >0, wg = 0, andw; = 0), then the solution to (27) is a
not on this curve tends to zero. solution to (28). Also, a solution to (28) with zero objeetiv

We also observe that faP,, > 0, A must be selected sovalue is a solution to (27). The second term in the objective
that the pointZ lies in D.. Otherwise, the state trajectoryfunction is included to regularize the numerical solutiZhe
eventually drifts toZ, corresponding te = 0 for all t, P,, = effect of this term can be controlled by changing the weights
0, and R = 0 (and stays there). wg and w,. These weights affect both the accuracy of the

results and also the rate at which the non-linear optinopati
algorithm converges. For the numerical results which fallo

A wo = wp = 1 andwy = 0, which give accurate results (i.e.,
PR L1 5, keep the first term in the objective small).
I F7 b Fig 2 shows free boundaries obtained numerically for var-
g ious values of the penalty factor (“water-levelX) In these

examples,p = 1, which corresponds to fast fading, i.e., the
correlation between channel values at the start and end of a
symbol period isl/e. In each case the training regidn lies

to the right of the boundary.

7 B. Capacity Comparison

To compute the achievable rate as a function/pf /o2,

g for given \, we average the total (data plus pilot) power

over the steady-state distribution of state variablgsf).

The transition probabilities for the discretized statecgpean

be computed from the conditional Ricean distribution on the
channel gain, or the system dynamics equations (16) and (15)
We remark that the PDE in regiol, is a “transport The steady state distribution over the state space can then b

equation” [6], which has an analytical solution containingbta:PEd fr?_m t?he 'ttr:mstg!oré_prob?bllgy mabtlrlx. ?P:Jr ”“T’F’ef
an arbitrary function of a single variable. Determiningsthi esults confirm that for this discretized problem, the phality

function and the constardt appears to be difficult, so that in mass is highly concenirated along the free houndary.
the next section we describe a numerical approach to solvingy assume that the observed Markov process under the optiri} o
the free boundary problem. ergodic.

k

Fig. 1. System dynamics for a bang-bang pilot power contréityo
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parameters are,? 1, 0,2 = 0.2 and the maximum allowable pilot polici
power, €maz = 10 (17dB)
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Comparison of rates achieved with different pilot poveontrol
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tional insight by considering various limits of the &y

Fig. 3 shows plots of achievable rate verstso? /o2 in dB  parameters. Also, we plan to use this model to charactepize o
with the following pilot power control policies: (1) optirha timal power control strategies over a wideband time-silect
corresponding to the free boundaries obtained in the pmsviachannel (e.g., containing several parallel flat fading cleds)
section; (2) approximation of the optimal boundary with as in [4]).

vertical line; and (3) constant (optimized) pilot power hwit
the optimized data power. The second policy takes 0 if
0 < 6y ande = €4, if 0 > 0y, whered, is approximately
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the optimal policy offers a significant increase in achidgab
rate, relative to constant pilot power, at low SNR'’s. We &tpe
this gap to increase as the correlation paramgtdecreases, 1]
since the more correlated the channel is in time, the legg]
frequently the pilot power is set 19,,.. Also, increasing the
allowable training powet,, . will also increase the gap. The 3]
rate obtained with the vertical line approximation to theefr
boundary is very close to optimal. Furthermore, the resuks
insensitive to small variations if.

As the power budget increases, the three curves convergs!.
This is consistent with Fig 2, which shows that the boundarYe]
corresponding to the highe#t,,, (A = 0.02) lies to the left of
the lined = 6*, corresponding to constant pilot powsf,... [7]

[8]

(4]

VIl. CONCLUSIONS

We have studied the achievable rate for a flat Rayleig?rﬁ’]
fading channel, where both the data and pilot power are
adapted based on estimated CSI. Taking a continuous limit]
in which the channel becomes a diffusion process gives a
more realistic view of the channel than a correlated blogky,
fading model, and provides insight into optimal power cohtr
policies. Although determining the free boundary in whibkb t (3]
pilot power switches between “on” and “off” is challenginty,
can be computed numerically, and for the example shown, can
be approximated as a vertical line with little loss in achiale [14]
rate. [15]

Although the PDE, which specifies the free boundary ap-
pears to be difficult to solve, it may be possible to gain
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