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Abstract— We consider data transmission through a time-
selective (correlated) flat Rayleigh fading channel under an
average power constraint. The channel is estimated at the receiver
with a pilot signal, and the estimate is fed back to the transmitter.
The estimate is used for coherent demodulation, and to adapt the
data and pilot powers. We start with a block fading channel in
which the channel gain changes according to a Gauss-Markov
process. The channel estimate is updated during each coherence
block with a Kalman filter, and optimizing the data and pilot
powers is formulated as a dynamic program. We then study a
continuous limit in which the coherence time tends to zero, and
the correlation between successive channel gains tends to one,
so that the channel process becomes a diffusion process. In this
limit it is shown that the optimal pilot power control policy is
“bang-bang”, i.e., depending on the current system state (channel
estimate and associated error variance) the pilot power is either
the maximum allowable, or zero. The associated regions of the
state space are illustrated numerically for specific system values.
This example shows that the achievable rate with the optimized
training policy provides substantial gains relative to constant
training power at low SNRs.

I. I NTRODUCTION

The achievable rate for a time-selective fading channel
depends on what channel state information (CSI) is available
at the receiver and transmitter. Namely, CSI at the receiver
can increase the rate by allowing coherent detection, and CSI
at the transmitter allows adaptive rate and power control (e.g.,
see [1, Ch. 6]). Obtaining CSI at the receiver and/or transmitter
requires overhead in the form of a pilot signal and feedback.

We consider a time-selective flat Rayleigh fading channel,
which is unknown at both the receiver and transmitter. The
transmitter divides its average power between a pilot, used
to estimate the channel at the receiver, and the data. Given
an average transmitted power constraint, our problem is to
optimize the instantaneous pilot and data powers over the
channel realization. Our objective function is a lower bound on
the achievable rate. Similar problems have been consideredin
previous work, e.g., [2]; however, our model differs in two key
respects. First, the channel evolves as a correlated process with
known statistics. Second, the estimated CSI is assumed to be
available at the transmitter (i.e., through a noiseless feedback
channel). The transmitter uses this CSI to control the data
and pilot powers. Namely, because the channel is correlated
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in time, adapting the pilot power with the estimated channel
state can increase the achievable rate.

We start with a correlated block fading model in which
the sequence of channel gains is Gauss-Markov with known
statistics. The channel estimate is updated at the beginning of
each block using a Kalman filter, and determines the power
for the data, and the power for the pilot symbols in the
succeeding coherence block. We show that optimal power
control policies are specified implicitly through a Bellman
equation [10]. Other dynamic programming formulations of
power control problems have been presented in [11]–[14],
although in that work the channel is either known perfectly
(perhaps with a delay), or is unknown and not measured.

Because an analytical solution to the Bellman equation
appears to be difficult to obtain, we study a continuous limit
in which the channel coherence time, or block length, tends
to zero, and the correlation between successive blocks tends
to one. In this limit, the Gauss-Markov channel becomes a
continuous-time Ornstein-Uhlenbeck process [5], and the Bell-
man equation becomes a partial differential equation (PDE).
A diffusion equation is also derived, which describes the
evolution of the state (channel estimate and the associated
error variance), given a power allocation policy. In this limit,
we show that given a peak power constraint for the pilot power,
the optimal pilot power control policy is “bang-bang”: the pilot
power is either the maximum allowable or zero, depending
upon the current state. Also, the optimal data power control
policy is found to be a variation of waterfilling [1].

The boundary of the state space, which specifies the op-
timal pilot power control, can be obtained by solving the
corresponding PDE. This problem falls into a class offree
boundary problems[6], [7], for which obtaining a numerical
solution is challenging. We reformulate this problem as a
variational inequality [7], which can be solved numerically
as a quadratic optimization problem. This technique is used
to compare achievable rates with the optimal pilot power
control policy with constant pilot power for a particular set of
system parameters corresponding to fast fading. Our results
show that the optimal policy offers substantial gains at low
SNRs. Furthermore, this improvement increases as the channel
correlation increases (i.e., the channel varies more slowly).



II. CORRELATED BLOCK FADING MODEL

We start with a block fading channel model in which each
coherence block containsM symbols, consisting ofT pilot
symbols andD data symbols. The vector of channel outputs
for coherence blocki is given by

yi = hi

( √

Pi;T si;T√
Pisi

)

+ zi (1)

where si;T and si are, respectively, vectors containing the
pilot and data symbols, each with unit variance, andPi;T

and Pi are the associated pilot and data powers. The noise
zi contains circularly symmetric complex Gaussian (CSCG)
random variables, and is white with covarianceσ2

zI. The
channel gainhi is also CSCG, is constant within the block,
and evolves from block to block according to a Gauss-Markov
process, i.e.,

hi+1 = r hi +
√

1 − r2 wi (2)

where wi is an independent CSCG random variable with
mean zero and varianceσh

2, and r ∈ [0, 1] determines the
correlation between successive blocks. We will assume thatr
andσ2

h are known at the receiver.
The training energy per symbol in blocki is defined as

ǫi = αPi;T , whereα = T/M . In what follows, it will be
convenient to writePi;T as ǫi/α.

The receiver updates the channel estimate during each
coherence block with a Kalman filter [8], using the pilot
symbols, and relays the estimate back to the transmitter.
The feedback occurs between the pilot and data symbols,
and is assumed to occupy an insignificant fraction of the
coherence time. The channel estimateĥi and estimation error
θi = E(|hi|2) − E(|ĥi|2) evolve according to the following
updates:

ĥi+1 = rĥi + gi+1

√

ǫi+1

α
Tei+1|i + gi+1s

H
i+1;T zi+1 (3)

θi+1 =
σz

2 θi+1|i

ǫi M θi+1|i + σz
2

(4)

where

gi =

√

ǫi

α

θi

σz
2

(5)

ei+1|i = hi+1 − r ĥi (6)

θi+1|i = r2 θi + (1 − r2)σh
2. (7)

It is straightforward to show that the channel estimateĥi in
(3) does not depend onT . Hence the data rate is maximized
by lettingT → 0 with fixed ǫi (i.e., the training powerPi;T →
∞).

We wish to determinePi and ǫi, which maximize the
achievable rate. Specifically, the channel estimateĥi and
varianceθi determine the data powerPi and the pilot power in
thenextcoherence blockǫi+1. We assume that the transmitter
codes over many coherence blocks, and use the following

lower bound on ergodic capacity as the performance objective
[3], [4]

R(Pi, µ̂i, θi) = log

(

1 +
Pi µ̂i

Pi θi + σz
2

)

(8)

whereµ̂i = |ĥi|2.

III. D YNAMIC PROGRAMMING FORMULATION

The pilot and data power control problem can be stated as

max
{Pi,ǫi}

lim inf
n→∞

1

n
E

[

n−1
∑

i=0

R(Pi, µ̂i, θi)

]

subject to: lim
n→∞

[

1

n

n−1
∑

i=0

ǫi +
1

n

n−1
∑

i=0

Pi

]

≤ Pav

(9)

where the expectation is over the sequence of channel gains.
This is a discrete-time Markov control problem, and the
solution can be formulated as a dynamic program. The system
state at time (block)i is Si = (µ̂i, θi), and the action maps
the state to the power pair(Pi, ǫi+1). To see thatSi is the
system state, note thatei+1|i and ĥi are independent random
variables, hence it follows from (3) and (4) that the probability
distribution of Si+1 is determined only bySi and the action
ǫi+1. The process{(µ̂i, θi)} is therefore a Markov chain driven
by the control{ǫi}.

The average power constraint in (9) can be included in the
objective through a Lagrange multiplier giving the relaxed
problem

max
(Pi,ǫi)

lim
n→∞

1

n
E

[

n−1
∑

i=0

[R(Pi, µ̂i, θi) − λ (ǫi + Pi)]

]

(10)

whereλ is chosen to enforce the constraint (9). If there exists
a bounded functionV (µ̂, θ) and a constantC, which satify
the Bellman equation

V (µ̂, θ) + C = max
(P,ǫ)

[

R(P, µ̂, θ) − λ (ǫ + P ) + Eǫ,(µ̂,θ)[V ]
]

,

(11)
then an optimal policy maximizes the right-hand side [10]. The
functionV (·, ·) is called an “auxiliary value function”, andC
is the maximum value of the objective in (10). The expectation
Eǫ,(µ̂,θ)[·] is over the conditional probability density ofSi+1

given Si = (µ̂, θ) and actionǫi+1 = ǫ.
Using the channel state evolution equations derived in

Section II, we have

Eǫ,(µ̂,θ)[V ] =

∫ ∞

0

V (u, θ(i+1)) fr(u)du (12)

where fr(u) is the conditional density of̂µi+1 = |ĥi+1|2
given Si = (µ̂i, θi) = (µ̂, θ), and θi+1 is given by (4)
with θi replaced by θ. From (3) it follows that fr(u)
is Ricean with noncentrality parameterr2µ̂ and variance
[(θi+1|iǫM)/σ2

z ]θi+1 + r2µ̂, whereθi+1 and θi+1|i are given
by (4) and (7), respectively, withθi replaced byθ.



IV. D IFFUSION L IMIT

The Bellman equation (11) is an integral fixed point equa-
tion, and appears to be difficult to solve analytically. To gain
insight into properties of optimal policies, we consider a
diffusion limit in which M = δt, r = 1−ρ(δt), andδt −→ 0.
That is, the coherence time goes to zero, and the correlation
between adjacent coherence blocks goes to one at a specific
rate determined byρ.

In this limit, it can be shown that the discrete-time, com-
plex, Gauss-Markov process{hi}, described by (2), converges
weakly to a continuous-time Ornstein-Uhlenbeck diffusion
processh(t) (e.g., see [9, Ch. 8]). Furthermore, the limiting
channel process satisfies the stochastic differential equation
(SDE)

d h(t) = −ρ h(t) dt +
√

2ρσh dB(t) (13)

where B(t) is complex Brownian motion, and we assume
that the initial stateh(0) is a CSCG random variable with
zero mean and varianceσ2

h. This is a stationary Gauss-
Markov process, which is continuous in probability, and has
autocorrelation function

Φ(τ) = σh
2 e−ρτ (14)

whereτ is the lag normalized by the symbol duration. Hence
ρ determines how fast the channel varies relative to the symbol
rate.

In the diffusion limit considered, the Kalman filter con-
tinuously estimates the channel during each symbol, and the
pilot and data powers are continuously updated. The channel
estimate and estimation error updates given by (3) and (4),
respectively, become the dynamical equations

dĥ(t) =

[

−ρ ĥ(t) + θ(t)
ǫ(t)

σz
2

(h(t) − ĥ(t))

]

dt

+



θ(t)

√

ǫ(t)

σz
2



 dB(t) (15)

dθ(t)

dt
= −2ρ θ(t) − ǫ(t)θ2(t)

σz
2

+ 2ρ σh
2 (16)

where B(t) is a complex Brownian process independent of
B(t), and ǫ(t) is the pilot power at timet. Furthermore, an
SDE defining the evolution of̂µ(t) = |ĥ(t)|2 can be obtained
through an application of Ito’s lemma [5].

If the average data power at timet is P (t), then the achiev-
able data rate corresponding toh(t) is R[P (t), µ̂(t), θ(t)],
whereR(·) is given by (8). Our problem is to chooseǫ(t) and
P (t), given the state(µ̂(t), θ(t)), to maximize the achievable
data rate averaged over the channel processh(t). Analogous
to (9) we have the continous-time control problem

max
(P (t),ǫ(t))

lim inf
t→∞

1

t
E

[
∫ t

0

R(P (t), µ̂(t), θ(t))dt

]

subject to:lim
t→∞

[

1

t

∫ t

0

ǫ(t) dt +
1

t

∫ t

0

P (t) dt

]

≤ Pav

(17)

Analogous to (11), the Bellman equation can be written as

C = max
(P,ǫ)

[R(P, µ̂, θ) − λ (ǫ + P ) + Aǫ[V (µ̂, θ)]] (18)

where Aǫ is generator of the state process(µ̂(t), θ(t)) with
pilot power ǫ(t) [5], and is given by

Aǫ[V ] =
E[dV ]

dt
= a + ǫb (19)

where

a =
∂V

∂µ̂
[−2ρµ̂] +

∂V

∂θ

[

−2ρθ + 2ρσh
2
]

(20)

b =
θ2

σz
2

[

∂V

∂µ̂
− ∂V

∂θ
+ µ̂

∂2V

∂µ̂2

]

(21)

and the dependence ont is omitted for convenience. Here we
ignore existence issues, and simply assume that there exists a
bounded, continuous, and twice differentiable functionV (·, ·)
satisfying (18). Note thatV (·, ·) is unique up to a constant
[10].

Theorem 1:Given a limitation on the peak pilot power, i.e.,
ǫ ∈ [0, ǫmax], the optimal pilot power control policy is given
by

ǫ⋆ =

{

ǫmax if b − λ > 0
0 if b − λ ≤ 0.

(22)

In words, the optimal pilot power control policy is bang-
bang. This follows immediately from substituting the generator
Aǫ, given by (19)-(21), into (18), i.e.,

C = f(µ̂, θ, λ) + max
ǫ

[a + ǫ(b − λ)] (23)

where f(µ̂, θ, λ) = maxP [R(P, µ̂, θ) − λP ]. Substituting
(22) into (23) gives the final version of the Bellman equation

C = f(µ̂, θ, λ) + a + ǫmax(b − λ)+ (24)

where(x)+ = max{0, x}. We remark that an alternative way
to arrive at (23) and (24) is to pass the discrete-time Bellman
equation (11) through the continuous-time limit.

It is easily shown that the optimal data power allocation is

P ⋆ = arg max
P

[R(P, µ̂, θ) − λP ] (25)

=

(−λσz
2(2θ + µ̂) +

√
∆

2λθ(µ̂ + θ)

)+

(26)

where ∆ = λ2 µ̂2 σz
4 + 4λ µ̂2θσz

2 + 4θ2µ̂λσz
2. Note that

P ⋆ > 0 for µ̂ > λσz
2. Finally, λ determinesPav in (17). We

note that this power allocation is the same as that obtained
in [15], which considers a fading channel with constant
estimation error, as opposed to the time-varying estimation
error in our model.

V. BEHAVIOR OF THE OPTIMAL POLICY

The boundary of the region, which defines the optimal pilot
power control policy, hereafter called “free boundary”, remains
to be determined. Nevertheless, we can make the following
observations.

Fig 1 illustrates the optimized pilot power control policy.
The vertical and horizontal axes correspond to the channel



estimateµ̂ and estimation error varianceθ, respectively. The
shaded region,Dǫ, is the region of the state space in which
ǫ = ǫmax, and ǫ = 0 in the complementry regionD0. These
two regions are separated by the free boundary,AC. The
penalty factorλ determines the position of this boundary, and
the associated value ofPav.

The vertical lineA′A′′ in the figure corresponds to the
estimation error varianceθ⋆, which results from takingǫ =
ǫmax for all t. Clearly, in steady state the estimation error
variance cannot be lower than this value, hence the steady-state
pdf of the state(µ, θ) is zero forθ < θ⋆. Substitutingǫ = ǫmax

in (16) and settingdθ
dt

= 0 gives θ⋆ = (
√

1 + 2σ2
hγ − 1)/γ

whereγ = ǫmax/(ρσ2
z).

Suppose that the initial state is inD0. With ǫ(t) = 0
the equations (15) and (16) becomedĥ(t) = −ρĥ(t)dt and
dθ(t)/dt = −2ρ(θ(t) − σ2

h). This implies that the state
trajectory is a straight line towards the pointZ until it hits
the free boundary, as illustrated in Fig. 1. If it hits the free
boundary below the pointB, then it is pushed back intoD0.
Otherwise, it continues intoDǫ and settles along the line
A′A′′. For a discrete state space with small, positiveδt, the
state trajectory zig-zags around the boundary, as shown in
Fig. 1. Hence if the free boundaryAC intersectsA′A′′ at
point B, then in steady state, the probability mass must be
concentrated along the curveA′BC. In the continuous-time
limit, this suggests that the probability associated with states
not on this curve tends to zero.

We also observe that forPav > 0, λ must be selected so
that the pointZ lies in Dǫ. Otherwise, the state trajectory
eventually drifts toZ, corresponding toǫ = 0 for all t, Pav =
0, andR = 0 (and stays there).

Fig. 1. System dynamics for a bang-bang pilot power control policy.

We remark that the PDE in regionD0 is a “transport
equation” [6], which has an analytical solution containing
an arbitrary function of a single variable. Determining this
function and the constantC appears to be difficult, so that in
the next section we describe a numerical approach to solving
the free boundary problem.

VI. N UMERICAL SOLUTION TO FREE BOUNDARY

PROBLEM

A. Optimization Formulation

Solving the free boundary PDE (24) includes specifying the
domain associated with the controlǫ = ǫmax. Because of this,
none of the standard numerical methods for solving PDEs can
be directly applied due to the absence of boundary conditions.
Here we show how to obtain a solution numerically by re-
formulating the problem as a large scale quadratic program.

We first observe that (24) can be written as the variational
inequality [7]

C − f − a ≥ 0

C − f − a − ǫmax(b − λ) ≥ 0

(C − f − a)(C − f − a − ǫmax(b − λ)) = 0 (27)

A solution to (27) is a solution to (24) and vice versa. Now
consider the following optimization problem,

min wo

∫

u1 u2 dθdµ̂+
∑

x∈X

wx

∫

[

(∂xu1)
2 + (∂xu2)

2
]

dθdµ̂

Subject to : C − f − a = u1 ≥ 0

u1 − ǫmax(b − λ) = u2 ≥ 0 (28)

where∂xui = ∂ui

∂x
dx for x ∈ X = {µ̂, θ} and i = 1, 2. If

wo > 0, wθ = 0, andwµ̂ = 0), then the solution to (27) is a
solution to (28). Also, a solution to (28) with zero objective
value is a solution to (27). The second term in the objective
function is included to regularize the numerical solution.The
effect of this term can be controlled by changing the weights
wθ and wµ̂. These weights affect both the accuracy of the
results and also the rate at which the non-linear optimization
algorithm converges. For the numerical results which follow,
w0 = wµ̂ = 1 and wθ = 0, which give accurate results (i.e.,
keep the first term in the objective small).

Fig 2 shows free boundaries obtained numerically for var-
ious values of the penalty factor (“water-level”)λ. In these
examples,ρ = 1, which corresponds to fast fading, i.e., the
correlation between channel values at the start and end of a
symbol period is1/e. In each case the training regionDǫ lies
to the right of the boundary.

B. Capacity Comparison

To compute the achievable rate as a function ofPav/σ2
z ,

for given λ, we average the total (data plus pilot) power
over the steady-state distribution of state variables(µ̂, θ).1

The transition probabilities for the discretized state space can
be computed from the conditional Ricean distribution on the
channel gain, or the system dynamics equations (16) and (15).
The steady state distribution over the state space can then be
obtained from the transition probability matrix. Our numerical
results confirm that for this discretized problem, the probability
mass is highly concentrated along the free boundary.

1We assume that the observed Markov process under the optimal policy is
ergodic.
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Fig. 3 shows plots of achievable rate versusPavσ2
h/σ2

z in dB
with the following pilot power control policies: (1) optimal,
corresponding to the free boundaries obtained in the previous
section; (2) approximation of the optimal boundary with a
vertical line; and (3) constant (optimized) pilot power with
the optimized data power. The second policy takesǫ = 0 if
θ < θ0 and ǫ = ǫmax if θ ≥ θ0, whereθ0 is approximately
aligned with the optimal boundary. The system parameters are
the same as in the previous section. The figure shows that
the optimal policy offers a significant increase in achievable
rate, relative to constant pilot power, at low SNR’s. We expect
this gap to increase as the correlation parameterρ decreases,
since the more correlated the channel is in time, the less
frequently the pilot power is set toǫmax. Also, increasing the
allowable training powerǫmax will also increase the gap. The
rate obtained with the vertical line approximation to the free
boundary is very close to optimal. Furthermore, the resultsare
insensitive to small variations inθ0.

As the power budget increases, the three curves converge.
This is consistent with Fig 2, which shows that the boundary
corresponding to the highestPav (λ = 0.02) lies to the left of
the lineθ = θ⋆, corresponding to constant pilot powerǫmax.

VII. C ONCLUSIONS

We have studied the achievable rate for a flat Rayleigh
fading channel, where both the data and pilot power are
adapted based on estimated CSI. Taking a continuous limit
in which the channel becomes a diffusion process gives a
more realistic view of the channel than a correlated block
fading model, and provides insight into optimal power control
policies. Although determining the free boundary in which the
pilot power switches between “on” and “off” is challenging,it
can be computed numerically, and for the example shown, can
be approximated as a vertical line with little loss in achievable
rate.

Although the PDE, which specifies the free boundary ap-
pears to be difficult to solve, it may be possible to gain
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Fig. 3. Comparison of rates achieved with different pilot power control
policies.

additional insight by considering various limits of the system
parameters. Also, we plan to use this model to characterize op-
timal power control strategies over a wideband time-selective
channel (e.g., containing several parallel flat fading channels,
as in [4]).
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