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Abstract

We consider the capacity of a wideband fading channel with partial feedback,
subject to an average power constraint. A doubly block Rayleigh fading model
is assumed with finite coherence time (M channel uses) and a large number of
independent, finite coherence bands. Without feedback, it is known that uniformly
spreading the signal power beyond a critical number of coherence bands decreases
the capacity. Here we assume that a pilot sequence is transmitted during each
coherence time for channel estimation, and that feedback is used to designate a
subset of coherence bands on which to transmit. Our problem is to optimize jointly
the training length, average training power, and spreading bandwidth, taking into
account the channel estimation error. We do this by maximizing a lower bound
on the ergodic capacity. This lower bound becomes tight for large M , and we
show that it increases as O(log M). The capacity of the partial feedback scheme
therefore exceeds the capacity of “flash” signaling when M exceeds a (positive)
threshold value.

1 Introduction

It has been shown for various channel models and input constraints that the capacity of
a time-varying wideband fading channel goes to zero as the signal is spread across an
increasing number of dimensions (e.g., coherence times and bands) [3–5]. This is due to
the inability of the receiver to obtain a satisfactory estimate of the channel as the signal
power per dimension decreases. To avoid this behavior, it is necessary to use “peaky”,
or “flash” signaling [1, 2], which constrains the amount of signal spreading in time and
frequency.

In this paper we consider a doubly block Rayleigh fading channel model, and a
training-based scheme for channel estimation. Namely, we assume that the channel is
partitioned in frequency into multiple (flat fading) coherence bands, each of which ex-
periences block Rayleigh fading over successive coherence times. The channel gains are
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assumed to be independent across coherence bands and coherence times. A sequence of
pilot symbols are transmitted at the begining of each coherence time, which enables the
receiver to obtain channel estimates over some subset of coherence bands.

The channel estimates provide an opportunity for adapting the transmitted signal,
given a feedback channel. We consider a feedback scheme whereby the receiver indicates
to the transmitter a subset of coherence bands over which to transmit (i.e., one feedback
bit per estimated channel coefficient). The transmitted power is then uniformly spread
over that subset (“on-off” power allocation). We optimize the spreading bandwidth with
and without feedback by maximizing a lower bound on the capacity over the training
length, training power, and threshold for activating a channel. The lower bound is the
rate achieved with a Gaussian code book, assuming coherent linear detection with a linear
Minimum Mean Square Error (MMSE) channel estimate obtained from the pilot.

Without feedback, in the infinite bandwidth limit, the pilot-based scheme considered
cannot perform better than a flash signaling scheme, which achieves the same capacity
as that achieved with complete channel knowledge at the receiver [1,2]. The lower bound
on capacity for the pilot-based scheme increases with coherence time, and approaches
the capacity with flash signaling only as the coherence time tends to infinity.

Related work (which does not consider feedback) is presented in [4], in which a range
of optimal spreading bandwidths is determined for a doubly-selective i.i.d. block fading
model. Those results are derived under a peak power constraint, as opposed to the
average power constraint considered here, and do not assume the availability of a pilot
for channel estimation.

We show that the capacity of the pilot-based scheme with partial feedback increases
as O(log M), where M is the coherence time in number of channel uses. This is consistent
with the observations made in [10], which considers a similar type of feedback scheme
for a Rayleigh fading channel at low SNRs. Hence there is a critical coherence time,
measured in number of channel uses, beyond which the partial feedback scheme performs
better than flash signaling. For the model considered, this value depends only on the
Rayleigh fading assumption, and is independent of the system parameters (i.e., signal
power, noise variance, and variance of channel gains). Without feedback we show that
the difference between the capacity of the pilot-based scheme and the capacity with flash
signaling tends to zero as 1/o(M).

2 System Model

We consider a time-varying wideband Rayleigh fading channel. To model finite coherence
bandwidth, we assume that the channel is divided into equal frequency slices (subchan-
nels) with bandwidth B, where each experiences i.i.d. flat Rayleigh fading. Since this
is a wideband system, we assume an infinite number of available parallel subchannels.
We will see, however, that the transmitter should always transmit on a finite subset of
channels. Each subchannel symbol has duration Ts, which is approximately equal to 1

B
.

We will refer to this duration as one channel use. To model finite coherence time, an i.i.d.

block fading model in time is assumed with a block length of M channel uses (coherence
time = M Ts). That is, subchannel fading coefficients remain constant for M channel
uses and then change to a new independent value.

We impose an average energy constraint P per channel use, hence the (normalized)
average power constraint is also P . The coherence block length is divided into training,
which is placed at the begining, and data transmission. The feedback, to be described,



occurs between the training and the data transmission, and its duration is assumed to
be an insignificant part of the coherence time. The receiver obtains a Minimum Mean
Squared Error (MMSE) estimate of the channel, based on the pilot symbols transmitted
during training, and uses that estimate for feedback and data detection. The feedback de-
termines a power allocation across subchannels for the data transmission. This procedure
is repeated for each coherence block.

The transmitter sends pilot symbols over a finite number of subchannels K. Those
channels are referred to as being “active”. (Note that a subset of active channels will carry
transmitted data.) Since subchannels are assumed to be i.i.d., the channel estimation
can be performed separately for each active subchannel by equally dividing the training
power among them. Let T denote the training length in number of channel uses, PT

denote the training power during the training period, and D and PD denote the data
length and average data power, respectively. Then we have that

T + D = M (1)

α PT + (1 − α) PD = P (2)

where α = T
M

is the fraction of the coherence time spent on training.
For the ith active subchannel, the transmitted vector symbol during the data part of

coherence block is represented by Xi = (xi1 xi2 ... xiD)T , and the corresponding received
vector symbol, Yi has a similar form. We omit the dependence on the coherence time
index for convenience. We have that

Yi = hi Xi + Ni (3)

where Ni is a D × 1 zero-mean, circularly symmetric, complex Gaussian (CSCG) noise
vector with covariance E(Ni N

H
i ) = σn

2 I and hi is the ith subchannel fading coefficient.
We will assume that the channel gains during a coherence time, {hi}, are also i.i.d.

CSCG random variables with mean zero and variance σh
2. Each channel gain changes

independently across the coherence blocks. Also, the additive noise random variables
across subchannels are independent.

Based on the training segment of the coherence block, the receiver obtains a channel
estimate ĥi with error ei. Since hi = ĥi + ei, we rewrite (3) as

Yi = ĥi Xi + ei Xi + Ni (4)

where ĥi and ei are uncorrelated, zero-mean, complex Gaussian. The error variance is
therefore σe

2 = E(|hi|
2) − E(|ĥi|

2). Since each pilot symbol has power PT /K and the
training length is T symbols, we can write the MMSE, or error variance, as

σe
2 = σh

2 − σh
4

(

T PT

σh
2 T PT + K σn

2

)

. (5)

3 Capacity Performance Objective

In what follows we adopt a capacity performance metric to optimize the training power
PT , data power PD, fraction of training symbols α, and number of active channels K.
Since the capacity achieving input distribution with imperfect channel knowledge is not
known [7], we derive a lower bound on capacity. This lower bound is the rate achieved
with a Gaussian input distribution and a coherent linear receiver, which uses the MMSE



channel estimate based on the pilot symbols. In particular, the receiver does not attempt
to improve upon the channel estimate during the data reception period.

¿From (4), the ergodic capacity is given by1

C = (1 − α)
1

D

K
∑

i=1

maxp(Xi|ĥi)
I(Xi;Yi|ĥi) (6)

Subject to :
K
∑

i=1

Eĥi

[

tr(Qĥi
)
]

≤ PD D

where p(Xi|ĥi) is the probability distribution of Xi given ĥi, and Qĥi
= E[XiX

†
i |ĥi].

We compute a lower bound on the mutual information I(Xi;Yi|ĥi), and subsequently
on capacity. The input distribution that maximizes the mutual information is unknown;
however, a lower bound is obtained by assuming that p(Xi|ĥi) is Gaussian [6, 7]. With
this assumption the differential entropy h(Xi|ĥi) = Eĥi

[log(|πeQĥi
|)]. Also, h(Xi|Yi, ĥi)

is upper bounded by the entropy of a Gaussian random variable with variance given by
the Mean Squared Error (MSE) associated with the linear MMSE estimate of Xi given
Yi and ĥi [7]. After some manipulation and application of the matrix inversion lemma
we obtain the lower bound

I(Xi;Yi|ĥi) ≥ I(Xi;Yi|ĥi) = Eĥi

[

log
(

|I + |ĥi|
2
(σe

2Qĥi
+ σn

2I)−1Qĥi
|
)

]

¿From Hadamard’s inequality this lower bound is maximized when Qĥi
is diagonal.

Letting Qĥi
= P (ĥi)ID×D, where P (ĥi) is the power of a data symbol in the ith subchannel

as a function of the channel estimate ĥi, the lower bound on mutual information can be
re-written as

I(Xi;Yi|ĥi) = D Eĥi

[

log

(

1 +
P (ĥi)|ĥi|

2

P (ĥi) σe
2 + σn

2

)

]

. (7)

Substituting this lower bound on mutual information into the capacity expression (6),
we obtain the following lower bound on capacity given power allocation strategy P (ĥi),

C = (1 − α) K Eĥi

[

log

(

1 +
P (ĥi)|ĥi|

2

P (ĥi) σe
2 + σn

2

)

]

(8)

with power constraint Eĥi

[

P (ĥi)
]

≤
PD

K
.

Here we have used the assumption that the channel estimate ĥi has the same distribution
for all K active subchannels.

4 Optimal Parameters

The lower bound (8) depends on the transmitter power allocation strategy. We consider
two scenarios. In the first, the transmitter uniformly distributes the power across all

1Throughout the paper we assume natural logarithms, so that capacity is measured in nats per
channel use.



data symbols (in time and frequency). That is, the transmitter does not make use of
feedback. In the second scenario, the transmitter transmits with constant power only on

channels for which the channel estimate |ĥi|
2

is above a threshold. (That is, the power
across active channels is a constant.) We refer to this as an “on-off” power allocation.
Although the optimal power allocation strategy, which maximizes (8), resembles water
pouring [9], the “on-off” power allocation is simpler to analyze and is known to achieve
near-optimal performance with perfect channel estimates [8].

4.1 No feedback

Since the power is spread evenly over all data symbols, P (ĥi) = PD/K for all i =

1, 2, . . . , K. Also, |ĥi|
2

has an exponential distribution with expected value σĥ
2 = (σh

2 −
σe

2), so that the lower bound on capacity (8) can be evaluated as

Cnfb = (1 − α) K ex γ(x) (9)

where γ(x) =
∫∞

x
e−t

t
dt is the zeroth-order incomplete gamma function and

x =
σh

2

σĥ
2

(

1 +
K σn

2

PD σh
2

)

− 1. (10)

The capacity expression (9) depends on the design parameters α, PT and K. Note
that for any permissible value of α and PT , as K → ∞, Cnfb → 0. This is because as
the number of active subchannels increases, the channel estimates degrade. Similarily,
for fixed K, Cnfb → 0 at the constraint values on training fraction and training power.
Hence we can jointly optimize α, PT , and K to maximize Cnfb.

We begin by optimizing the training fraction α. For this case, we write (8) as an
integral, substitute for P (ĥi), and subsequently for PD from equation (2), to obtain

Cnfb = (1 − α) K

∫ ∞

0

log

(

1 +
(P − εT ) t

(P − εT ) σe
2 + K σn

2 (1 − α)

)

1

σĥ
2
e−t/σ

ĥ

2

dt (11)

where εT = αPT is the average training power.
Note from (5) that σe

2 and hence σĥ
2 depend on εT but not on α explicitly. This

observation and the fact that K (1−α) log(1+ a
b+K (1−α)

) is a decreasing function of α for
all positive a and b implies that the integrand, and hence the integral, is maximized by
letting α → 0 while keeping the average training power εT fixed. (Our results in Section
5 show that this dependence on α vanishes as K and M become large.)

We substitute the optimal value α → 0 in (9) and proceed to optimize K and εT . Let
εT

′ = εT

P
and K ′ = Kσn

2

Pσh
2 , and note that x in (10) is a function of εT

′, K ′ and M only.

The capacity (9) can now be rewritten as

Cnfb =
P σh

2

σn
2

K ′ ex γ(x) (12)

Since P and M are system parameters, maximizing (12) with respect to K and εT is
equivalent to maximizing with respect to K ′ and εT

′. The optimal values depend only
on M , i.e., K ′? = gK(M) and εT

′? = gεT
(M), hence the optimal values of εT and K have

the forms

εT
? = P gεT

(M) K? = P
σh

2

σn
2
gK(M). (13)



To evaluate the preceding functions of M , we note that ex γ(x) in (12) is a decreasing
function of x, and depends on εT

′ only through x. Therefore the optimal value of εT
′

minimizes x, which gives

gεT
(M) = −z + (z2 + z)1/2 where z =

gK(M) + 1

M − 1
.

Also,
gK(M) = arg max

xk

[

xk ex′

γ(x′)
]

where

x′ =

(

1 +
xk

1 + v − (v2 + v)1/2

) (

1 +
xK

((v2 + v)1/2 − v) M

)

− 1

and v = (xk + 1)/(M − 1). The lower bound on capacity is then

C?
nfb =

P σh
2

σn
2

gC(M) = Cflash gC(M) (14)

where Cflash = Pσh
2

σn
2 is the capacity with peaky, or flash signaling, and is also the capacity

with perfect channel knowledge at the receiver [2], and gC(M) is obtained by substituting
K? and ε?

T in (12). Plots of the functions gK(M), gεT
(M), and gC(M) are given in Section

6. Clearly, Cflash is an upper bound on the performance of the training-based scheme
without feedback. The rate at which C?

nfb approaches this bound with M is discussed in
Section 5.

4.2 Partial Feedback

We assume the power allocation

P (ĥi) =

{

Po if |ĥi|
2
≥ t0

0 otherwise

which requires one feedback bit per subchannel per coherence block. From (8), the lower
bound on ergodic capacity is

Cfb = (1 − α) K

∫ ∞

t0

log(1 +
Po t

Po σe
2 + σn

2
)f(t)dt (15)

with the power constraint
∫ ∞

t0

Pof(t)dt =
PD

K

where, f(t) = 1
σ

ĥ

2 e−t/σ
ĥ

2

. This can be rewritten as

Cfb = (1 − α) K e
−

t0

σ
ĥ

2

[

log

(

y

y − t0
σ

ĥ

2

)

+ eyγ(y)

]

(16)

where

y =
σh

2

σĥ
2



1 +
K σn

2 e
−

t0

σ
ĥ

2

PD σh
2



 − 1 +
t0
σĥ

2
.



As before, we can maximize Cfb with respect to the training fraction (α), training
power (PT ), on-off threshold (t0) and number of subchannels (K). Following an argument
analogous to that given in the preceding subsection, it can be shown that the optimal
values satisfy

α? −→ 0 εT
? = P fεT

(M) K? = P
σh

2

σn
2
fK(M) t0

? = σh
2 ft(M) (17)

and the lower bound on capacity

C?
fb =

P σh
2

σn
2

fC(M). (18)

where the “f” functions depend only on M . Here K? is the total number of subchannels
monitored with pilot symbols. Data is transmitted only on the subset of K? channels with
estimated channels gains |ĥi|

2 ≥ t?0. In contrast, with no feedback data is transmitted
on all K? subchannels. In either case, K? represents the optimal spreading bandwidth.
Although it appears to be difficult to evaluate the preceding optimal system values in
closed-form, it is straightforward to evaluate them numerically. Plots of the preceding
functions of coherence time M are given in Section 6.

5 Asymptotic Analysis

We now examine the behavior of the capacity as both the number of channels K and the
coherence time M becomes large. Specifically, we can evaluate the lower bounds in (9)
and (16) as K → ∞ and M → ∞ with fixed ratio K

M
= β, which represents the spreading

bandwidth. Using the fact that u eu γ(u) → 1 as u → ∞, it is easily shown that (9) and
(16) converge respectively to

C∞
nfb =

(P − αPT ) σĥ
2

σn
2

(19)

and

C∞
fb∞ =

(P − αPT ) σĥ
2

σn
2

+
(P − αPT ) t0

σn
2

(20)

where the variance of the channel estimate

σĥ
2 = σh

4

(

α PT

σh
2 α PT + β σn

2

)

. (21)

Comparing (19) and (20), the second term in (20) represents the gain due to feedback.
Although this term can be arbitarily large, depending on the choice of t0, the choice of t0
influences how large M must be in order to achieve the corresponding rate in (20). This
relation is clarified in the Theorem (and proof), which follows.

We observe that these asymptotic capacity expressions depend only on the training
power α PT , and not on the particular value of α. Note that α PT determines the quality
of the channel estimate, reflected in the variance σĥ

2. If we increase α, keeping the
training power fixed, the loss in data transmission time is therefore exactly compensated
by the increase in data symbol power. We also note that because |1−u eu γ(u)| decreases
as O(1/u) with u → ∞, we can show that the difference C∞

nfb −Cnfb and C∞
fb −Cfb with

fixed t0 both go to zero as O(1/K).



We now consider maximizing the asymptotic capacity expressions over the average
training power α PT and β, which represents the spreading bandwidth. It turns out that
both expressions are maximized by letting α PT → 0 and β → 0 while maintaining
α PT σh

2 � β σn
2, so that the channel variance in (21) asymptotically converges to

σĥ
2 = σh

2, and the estimation error converges to zero. That is, both the average training
power and number of channels per coherence time tend to zero in such a way that perfect
channel estimates are obtained (asymptotically) for all active subchannels. With this

choice of α PT and β, the capacity without feedback approaches Cflash = P σh
2

σn
2 . However

to achieve this, since β → 0, K → ∞ sublinearly with M , i.e., K = o(M). Hence, we
conclude that with optimized training power and spreading bandwidth, Cflash−Cnfb → 0
as 1/o(M). This is illustrated numerically in the next section.

Returning to the scenario with partial feedback, we observe that although (20) is
derived from the lower bound on capacity for finite K and M , the lower bound approaches
the true capacity as the channel estimation error tends to zero (i.e., the receiver performs
coherent detection given the channel). Hence letting α PT → 0 in (20), according to the
preceding discussion, implies that the asymptotic capacity with partial feedback becomes
C∞

fb = Cflash + Pt0/σ
2
n for any fixed t0. To achieve this capacity, we must let β → 0, and

furthermore, the number of channels above the threshold t0, given by K e−t0/σ
ĥ

2

, must
tend to infinity. (Otherwise, the capacity must converge to zero.) Combining these facts
leads to the following Theorem.

Theorem 1 In the asymptotic limit of large coherence time M , the capacity of the pilot-

based scheme with partial feedback grows as O(log M).

Proof. Since we must have K e
−

t0

σ
ĥ

2

→ ∞ with K, t0 cannot grow faster than σĥ
2 log K,

and since β → 0 implies K = o(M), the capacity in (20) cannot grow faster than
O(log M). Taking t0 = σĥ

2 log[K1−ε1 ] with ε1 > 0 and K = M1−ε2 with ε2 > 0 shows
that the O(log M) growth is achievable.

6 Numerical Results and Capacity Comparison

Here we present numerical results obtained by optimizing α, PT , and K directly in (9)
and (16) for finite values of M . Fig. 1 shows plots of the optimal number of channels K?

and the optimal average training power (αPT )? normalized by the appropriate factors.
Results for both scenarios with and without feedback are shown. (That is, the plots show
gεT

(M), gK(M) in (13) and fεT
(M), fK(M) in (17) versus M .) As the coherence time

M increases, we can obtain more accurate channel estimates while spending less training
power per subchannel. Hence, the optimal training power decreases with coherence time,
and the optimal number of active subchannels increases. This allows for an increase
in data power and number of subchannels used for data transmission, and hence the
capacity increases with M .

Fig. 2 shows plots of capacity versus M for the schemes considered in this paper.
We have plotted the normalized values gC(M) and fC(M), so that unity corresponds to
the capacity with peaky, or flash signaling. As stated in the Theorem, the lower bound
on capacity with feedback increases as log M , asymptotically, whereas the corresponding
capacity without feedback approaches Cflash (a constant independent of M).

Beyond a critical value of M , say Mcrit, the feedback scheme gives a higher ca-
pacity than flash signaling. Since C?

fb = Cflash fC(M), it follows that Mcrit satisfies



fC(Mcrit) = 1. Solving this numerically gives Mcrit ≈ 120, which, perhaps surprisingly,
is independent of the system parameters. That is, for the block i.i.d. Rayleigh fading
model, if the coherence time of the channel exceeds 120 channel uses, then the partial
feedback scheme considered achieves a higher capacity than the optimal peaky signaling
scheme without feedback, irrespective of the channel variance, noise variance, and aver-
age power constraint. If the channel coherence time is less than 120 channel uses, then
this feedback scheme (with Gaussian codewords) does not achieve as high a capacity as
peaky signaling without feedback.

Figure 1: Optimal number of active subchannels (normalized) and optimal average train-
ing power (normalized) versus coherence time M .

Figure 2: Achievable rates (normalized) for various signaling schemes versus coherence
time M , and optimal on-off threshold value (normalized) with partial feedback versus
M .

Finally, Fig. 2 also shows the normalized optimal threshold ft(M) for the feedback
scheme versus M . As discussed in the previous section, for large M the optimal threshold
grows as log M . This relatively slow increase, combined with sublinear growth in K as
a function of M , guarantees that that for large M , there are a large number of channels
with gains that exceed the threshold.



7 Conclusions

We have considered a time-varying wideband system with pilot-assisted training and
feedback. The performance of this scheme, relative to the performance of peaky, or
flash signaling without feedback, depends critically on the coherence time. Namely, for
the block i.i.d. Rayleigh fading channel model, the capacity with the feedback scheme
considered grows as log M when M is large, and surpasses the capacity without feedback
when M exceeds 120 channel uses. Other fading distributions can be analyzed within the
framework presented, and, of course, may lead to quite different relative performance.

Although the on-off feedback scheme considered is known to have optimal properties
[8], an open question is whether or not other finite-rate feedback schemes can achieve
higher capacities. Also, our model has assumed that the channel gains are i.i.d. across
both frequency and time. A natural extension of this work is to consider a dynamic
scheme for allocating training and data power with correlated fading.
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