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Abstract—Given a frequency-selective fading channel, feed-
back can be used to conveyChannel State Information (CSI)and
Receiver State Information (RSI)to the transmitter. RSI refers to
information about the receiver’s estimate of the message, which
can be used to improve reliability, e.g., through retransmissions.
This paper studies the trade-off between these two types of
feedback under total feedback constraint, assuming multi-carrier
transmission through a doubly-selective Rayleigh fading channel.
The objective is to maximize the error probability exponent. The
CSI feedback scheme specifies particular groups of sub-channels
over which uniform power is allocated, and the RSI feedback
determines retransmissions of the codeword. The optimal trade-
off exhibits phase transitions which depends critically on the
coherence time and the total amount of feedback. Specifically,
the first few feedback bits should be allocated to CSI up to
a critical amount. Additional feedback bits, if available, should
first be allocated to RSI only, and then allocated to both CSI and
RSI. This is because as the feedback rate increases beyond a
certain amount, additional RSI feedback is not beneficial unless
CSI feedback increases simultaneously.

I. I NTRODUCTION

A feedback link from the receiver to the transmitter can be
utilized in several ways. For example, the receiver can inform
the transmitter about its estimate of the message, based on
which the transmitter might choose to re-transmit part or all
of the original codeword. These schemes include automatic
repeat request (ARQ) protocols [1]. The main benefit is
improvement in data reliability, or equivalently, a reduction
in average decoding delay for a target probability of error.
Several generalizations, including full feedback of received
symbols [2], [3] and limited feedback schemes [4], [5] have
been studied. We refer to this type of feedback asReceiver
State Information (RSI)feedback.

Alternatively, given a fading channel, which is known at the
receiver, but is initially unknown at the transmitter, feedback
can conveyChannel State Information (CSI). This can increase
the capacity of the channel through power and rate adaptation
[6]. Limited feedback schemes for CSI have been recently
studied in [7]–[9] for multi-carrier transmission.

This work formulates a model and studies the relative
benefits of CSI and RSI. Specifically, given fixed forward and
feedback rates, the problem is to optimize the split between
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CSI and RSI. To ease the analysis, we maximize the error
exponent instead of minimizing the error probability directly.
Note that allocating feedback bits to CSI increases the error
exponent by increasing the achievable rate. In contrast, RSI
does not increase the achievable rate, but increases the error
exponent by reducing error events [2], [4].

The channel is assumed to be doubly-selective block
Rayleigh fading. That is, there are parallel block fading sub-
channels each having the same coherence time and bandwidth.
The channel realizations are independent across all time-
frequency coherence blocks. The CSI feedback occurs at the
beginning of each coherence block. To accomodate a continu-
ous range of feedback rates, which can be arbitrarily small, we
assume that the set of sub-channels is partitioned into equal-
sizegroups(see [7], [10]). The CSI feedback indicates which
groups should be activated, i.e., the groups in which all sub-
channel gains exceed a threshold. The transmitter uniformly
spreads the data power over the active groups. The feedback
rate is therefore controlled by the group size and threshold.

The RSI feedback scheme is taken from [4]. Namely, a
codeword spans multiple coherence blocks and limited RSI is
fed back at the end of each codeword transmission. Note that
CSI and RSI are fed back at different times and the only con-
straint is on the average number of feedback bits per channel
use. Also, as in [4], there are no delay constraints associated
with the feedback, which facilitates the analysis. Although RSI
feedback gives some implicit information about the channel
realized during the course of the transmitted codeword, CSI
in our model pertains to the channel state corresponding to the
nextpacket transmission. Note that transmission takes place in
the units of coherence blocks. In particular, the channel can
be regarded as memoryless conditioned on the CSI.

We determine the optimal allocation of feeback bits to CSI
and RSI asymptotically as the number of sub-channels, feed-
back rate, coherence time (T channel uses) and transmission
rate (R nats per channel use) are scaled appropriately. For
the model considered, the first few feedback bits, denoted
as Rcrit

csi , should be allocated to CSI. Additional feedback
bits, if available, should first be allocated to RSI only, and
then allocated to both CSI and RSI. This is because as the
amount of feedback increases, allocating additional feedback
bits to RSI may not be beneficial unless a certain proportion
is allocated to CSI. The results also show that the relative



benefits of CSI and RSI depend critically on the coherence
time. GivenN sub-channels and signal-to-noise ratio (SNR)
S, Rcrit

csi grows asST/4 for T < log N with large enoughN .
As T increases beyondlog N , Rcrit

csi grows more slowly and
eventually decreases.

II. M ULTI -CARRIER MODEL WITH FEEDBACK

Consider multi-carrier transmission overN independent
Rayleigh fading sub-channels, so that theN × 1 vector of
channel outputs across sub-channels is given by

y = Hx + z (1)

where H = diag[h1, h2, . . . , hN ] is the channel matrix in
which the diagonal entries are independent, circularly sym-
metric complex Gaussian (CSCG) random variables with mean
zero and varianceσ2

h. The N × 1 input vectorx satisfies the
average power constraintE

[
xHx

]
≤ P and the noise vector

z has CSCG entries with mean zero and varianceσ2
z . The

channelH is assumed to be known perfectly at the receiver.
We assume a block fading model so thatH remains constant
for T channel uses and then changes to an independent value.
The time dependence is suppressed to simplify notation.

A. CSI Feedback

At the beginning of each coherence block, we assume that
TRcsi nats are fed back, whereRcsi is the CSI feedback
rate.1 The CSI feedback scheme presented in [7], [10] is
assumed, in which the total set of sub-carriers is partitioned
into G nonoverlapping groups each containingNG = N/G
consecutive sub-channels. Let theNG × 1 vector of sub-
channel gains corresponding to thegth group be hg =
[hg1, hg2, . . . , hgNG

]T . Given a thresholdto, the receiver
informs the transmitter to use this group if|hgi|2 ≥ to
for all i = 1, 2, . . . , NG. The probability of this event is
p = e−NGto/σ2

h , so that for largeN the average amount of
feedback required per coherence block can be compressed
to the entropy rate.2 The CSI feedback constraint is therefore
GH(p) ≤ TRcsi. whereH(p) = −p log(p)−(1−p) log(1−p).
Clearly, the larger the coherence time, the less CSI is required
per channel use to achieve a target rate.

Given the CSI feedback, the transmitter allocates powerPo

uniformly over the set of active sub-channel groups. Subject
to this constraint, the maximum achievable rate (ergodic
capacity) is given by

C(Rcsi) = GEhg

[
1{|hgi|2≥to,∀i}

NG∑
i=1

log
σ2

z +Po|hgi|2

σ2
z

]
(2)

=
P

Po

∫ ∞

to

e−(t−to)/σ2
h

σ2
h

log
σ2

z + Pot

σ2
z

dt (3)

1This is an abstraction for the scenario in which the channel is estimated
by the receiver at the beginning of the coherence block. Here we ignore the
overhead due to training and feedback.

2A practical variable-length prefix code typically requires an additional
bit per coherence block. We ignore this, since a coherence block is likely
to contain several hundred channel uses, so that this extra bit contributes
negligible feedback overhead.

where Po = P/(N e−NGto/σ2
h). Note that this rate does

not depend upon the coherence block lengthT , since the
transmitter is assumed to code across many coherence blocks
in frequency and/or time.

We wish to choose the feedback parametersNG and
to to maximizeC(Rcsi) subject to the feedback constraint
GH(p) ≤ TRcsi. Although it appears to be difficult to obtain
an analytical characterization of the solution for arbitraryN ,
the following proposition, repeated from [10], characterizes
the solution for largeN andTRcsi.

Let u? be the positive solution tolog(1 + u) = 2 u/(1 + u)
(i.e., u? ≈ 3.92), andε1, ε2 satisfy

log N − log
[

S

u?
(log N)1−

ε1
2

]
= (log N)1−

ε1
2 (4)

log N − log[S(log N)1+ε2 ] = (log N)(1+ε2)/2, (5)

respectively, whereS = Pσ2
h/σ2

z is the SNR. Note that for
large N , ε1 ∈ (0, 2) and ε2 ∈ (0, 1). Moreover, asN → ∞,
we haveε1 → 0 and ε2 → 1.

Proposition 1: [10] As N → ∞, if TRcsi → ∞ with N
and

TRcsi ≤
S

u?
(log N)2−ε1 , (6)

then the capacity, optimized over bothNG and to, satisfies

C(Rcsi) =

√
S

u?
log(1 + u?)

√
TRcsi + o(1) (7)

whereo(1) stands for a vanishing term asN →∞. If instead
the feedback rate is greater than (6) but satisfies

S

u?
(log N)2−ε1 ≤ TRcsi ≤ S(log N)2+ε2 , (8)

then the optimized capacity satisfies

C(Rcsi) =
TRcsi

log N
log

(
1 +

S log N

TRcsi
log

N log N

TRcsi

)
+ o(1).

(9)
Finally, if

S(log N)2+ε2 ≤ TRcsi, (10)

then the optimized capacity satisfies

C(Rcsi) = S log N + o(log N) (11)

A characterization of the optimized thresholdt?o and the
optimized sub-channel group sizeN?

G, along with a discussion
of those results, is given in [10]. In particular, assuming a
large fixedN , NG

? decreases withTRcsi. When TRcsi >
(S/u?)(log N)2−ε1 , NG

? = 1 and t?o increases aslog N .

B. RSI Feedback

In addition to CSI feedback, we assume an average feedback
rate ofRrsi nats/channel use, which specifies RSI. RSI feed-
back bits are assumed to be transmitted after the transmission
of each codeword. We adopt the approach presented in [4],
[5], in which the RSI feedback determines whether or not
the transmitter re-transmits the codeword. This also requires
a synchronization mechanism between the transmitter and
receiver via the noisy forward channel.



Here we focus on the scheme given in [4] for which
0 ≤ Rrsi ≤ R, i.e., increasing the feedback rate beyond the
forward rate does not improve performance. Although the
results in [4] assume a discrete memoryless channel, they can
be extended to block fading channels by treating each block
as one vector channel use. Moreover, the results in [4] can be
extended to a wide class of continuous alphabet channels.

It is shown in [4] that with RSI feedback alone the proba-
bility of decoding error satisfies

Pub
e = e−n E1(Rcsi,Rrsi,λ) + e−n E2(Rcsi,λ) (12)

wheren is the averagedecoding delay measured in number
of coherence blocks here, and the fraction1 − λ of channel
uses is devoted to synchronization whereλ ∈ (0, 1). The first
exponentE1 is determined by the probability that the receiver
makes a decoding error, which the transmitter is unable to
detect due to the limited RSI. The second exponentE2 is
determined by the probability of the event that the transmitter
is aware that the receiver’s estimate is incorrect, but is unable
to synchronize within the time constraint. Note thatRrsi only
affects the first exponent. In particular, from [4]

E1 = λEg

(R−Rrsi

λ
,Rcsi

)
+ λ

∣∣∣C(Rcsi)−
R−Rrsi

λ

∣∣∣+
(13)

and

E2 = λEg

(R

λ
,Rcsi

)
+ λ

∣∣∣C(Rcsi)−
R

λ

∣∣∣+ + (1−λ)C1(Rcsi)
(14)

where Eg(R,Rcsi) is the random coding error exponent3

[11] and C1(Rcsi) is the distance between the two most
distinguishable channel inputs.

Let f(ȳ, s|x̄) denote the joint probability density function
of the lengthT channel output vector̄y and the channel state
s, given the lengthT input vectorx̄ in one coherence block.
Let f(x̄|̂s) denote the probability density function of the input
given the estimate of the channel stateŝ. Then we have

Eg(R,Rcsi) = max
0≤ρ≤1

{
1
T

Eo(ρ)− ρR

}
(15)

where

Eo(ρ) =

− log
∫ (∫

x̄

(f(ȳ, s|x̄))1/(1+ρ)f(x̄|ŝ)dx̄
)(1+ρ)

dȳds (16)

and

C1(Rcsi) =

max
x̄1 (̂s),x̄2 (̂s)

1
T

∫
f(ȳ, s|x̄1(̂s)) log

f(ȳ, s|x̄1(̂s))
f(ȳ, s|x̄2(̂s))

dȳ ds (17)

where the maximization is over all codewords̄x1(̂s) and
x̄1(̂s). Both Eg and C1 are assumed to be continuous and
increasing functions ofRcsi.

3We use the random coding exponentEg instead of the sphere packing
exponent, as in [4], to simplify the analysis. Although this gives a slightly
looser upper bound onPe, it is unlikely to change our results.

For the block Rayleigh fading channel channel considered,
we can evaluate (16) and (17) and apply Jensen’s inequality
to obtain the upper bound

Eo(ρ) ≤ Nρe−NGto/σ2
h log

(
1 +

Po(to + σ2
h)

σ2
z(1 + ρ)

)
(18)

Using (18), it is easy to show that the random coding exponent
(15) satisfies

Eg(R,Rcsi) ≤ C(Rcsi)−R. (19)

Numerical results indicate that this upper bound is fairly tight.
We will therefore assume that the bound is the exact value
when solving for the optimal CSI and RSI trade-off. Also,

Eg(R−∆R,Rcsi)− Eg(R,Rcsi) ≤ ∆R (20)

with equality if R is sufficiently below the capacity.
To evaluateC1 in (17) we assume that the two input

sequences during the synchronization phase have the elements
+
√

Po1{|hgi|2}≥to
and−

√
Po1{|hgi|2}≥to

, respectively, which
maximize the distance subject to the input power constraint.
We can then evaluate (17) as

C1(Rcsi) =
4P (to + σ2

h)
σ2

z

. (21)

III. PROBLEM STATEMENT

Assuming that on averageRf nats/channel use are available
for feedback, the problem is to determine the optimal split
between CSI and RSI. The objective is the asymptotic decay
rate, or exponent, of the probability of decoding error. More
precisely, we wish to maximize

lim
n→∞

− 1
n

log Pub
e (22)

over (Rcsi, Rrsi, λ) subject to

λC(Rcsi) ≥ R (23)

Rcsi + Rrsi ≤ Rf (24)

where (23) ensures that the forward rate constraint is met with
the RSI feedback scheme.

We assume thatC(Rf ) ≥ R so that the problem is
feasible. Note that the objective (22) with finiten corresponds
to minimizing the probability of decoding error assuming a
decoding delay ofn coherence blocks. An equivalent objective
to (22) is to maximize the smaller one of the two exponents
E1 andE2 given by (13) and (14) respectively.

Although our objective is to maximize (22), to simplify the
analysis, we will assume that the CSI parametersNG and
to are chosen to maximize the achievable rate, as in Section
II. Although those parameters may change according to the
different objectives, we do not expect that using the capacity
objective will affect our asymptotic results.



IV. OPTIMAL ALLOCATION OF FEEDBACK

In this section we investigate the trade-off between CSI
and RSI. To simplify the analysis we make the following
approximations: The bounds (19) and (20) are the exact values
and the ratio C(Rcsi)/C1(Rcsi) ≈ φ whereφ is a constant.
WhenRcsi satisfies (6), using (7) and the optimal value ofto,
we approximateφ = (log(1+u?))/(4u?) ≈ 0.1, and similarly
for the range (8), we takeφ = 1/4 = 0.25. The numerical
results in the next section show that the corresponding analysis
provides accurate insight into the optimized CSI and RSI
trade-off.

Recall that the objective is to maximize the minimum of
E1 andE2, which are increasing and decreasing functions of
λ, respectively. IfE2 > E1, then λ can be increased until
E1 = E2. This is possible sinceE1 ≥ E2 for λ = 1. On
the other hand, ifE2 < E1, then we wish to decreaseλ until
E1 = E2. Equating (13) and (14), assuming that the bound
(20) is exact, we get the optimum time-sharing parameter

λ? = 1− 2Rrsi

C1(Rcsi)
. (25)

This assumes that sufficient CSI is available to support the
forward rate, i.e.,

R ≤ λ?C(Rcsi) = C(Rcsi)− 2φRrsi. (26)

The minimum CSI feedback rate, corresponding to equality in
(26), is denoted asRmin

csi , which is no greater thanRf .
Since λ can be chosen to equateE1 and E2, we define

E?
1 (Rcsi, Rrsi) = E1(R,Rcsi, Rrsi, λ

?), and rewrite the opti-
mization problem (22)–(24) as

maximize E?
1 (Rcsi, Rrsi) (27)

subject to Rcsi + Rrsi ≤ Rf (28)

2φRrsi ≤ C(Rcsi)−R (29)

0 ≤ Rrsi ≤ R (30)

where (29) is a rearrangement of (26) which guarantees the
balance of the two error exponentsE1 andE2. Assuming the
bounds (19) and (20) are tight, we have

E?
1 (Rcsi, Rrsi) ≈ 2 [λ?C(Rcsi)−R + Rrsi] (31)

= 2C(Rcsi) + 2(1− 2φ)Rrsi − 2R. (32)

Evidently,∂E?
1/∂Rrsi = 2(1−2φ) is approximately constant,

and∂E?
1/∂Rcsi = 2C ′(Rcsi). The derivativeC ′(Rcsi) is very

large for smallRcsi and decreases monotonically to zero as
Rcsi becomes large. AsRf increases from zero, we conclude
that the benefit from CSI dominates that of RSI until the two
derivatives are equal, and then the benefit from RSI becomes
larger until Rrsi = R or that the condition (29) is met with
equality. From then on, more CSI is needed along with RSI
to achieve the optimal allocation.

Let Rcrit
csi be the solution to

C ′(Rcsi) = 1− 2φ (33)

and Rm = max
{
Rmin

csi , Rcrit
csi

}
. The optimal CSI-RSI split

can now be specified as follows,

R?
csi =


Rf if Rmin

csi ≤ Rf ≤ Rm

Rm if Rm < Rf ≤ Rm + (C(Rm)−R)/(2φ)
Rc otherwise

(34)
whereRc is the solution to

Rf = Rc + (C(Rc)−R)/(2φ). (35)

Clearly, the trade-off exhibits three phases depending on the
total amount of feedbackRf .

Proposition 1 allows us to determineRcrit
csi . Namely, ifT ≤

(log N)1−
ε1
2 for largeN , thenRcrit

csi satisfies (6) and we can
substitute the capacity expression (7) into (33). Takingφ = 0.1
and also using the approximation2(log(1 + u?))/

√
u? ≈ 1.6

gives

Rcrit
csi ≈

ST

4
. (36)

If (log N)1−
ε1
2 < T , then Rcrit

csi satisfies (8). Substituting
the capacity expression (9) into (33) and takingφ = 0.25 gives
the condition

log
(

1 +
S log N

TRcsi
a(N)

)
= S

1 + a(N)
TRcsi

log N + Sa(N)
+

log N

2T
.

(37)
wherea(N) = log[(N log N)/TRcsi]. For larger values ofT ,
Rcrit

csi can be shown to increase sublinearly withT (in contrast
to (36)), and it is easy to show thatTRcrit

csi ≤ S(log N)2+ε2 .

V. NUMERICAL RESULTS

This section presents numerical solutions to the constrained
maximization of (22), and thereby demonstrates that the an-
alytical results in this paper provide accurate insights into
the optimized CSI and RSI trade-off for finite-size systems.
Exact expressions forEg andC(Rcsi) are used andNG and
to are chosen to maximize the exponent (22) as opposed to
the capacityC(Rcsi). Unless stated otherwise, the SNR is
normalized toS = 1, the number of sub-channels isN = 1000
and the transmission rate is assumed to beR = 1.6 nats per
channel use.

Fig. 1 plots optimal amounts of CSI and RSI versus total
feedback rateRf for different coherence times. Due to the
choice of R, here we haveRcrit

csi > Rmin
csi . Specifically,

Rm = Rcrit
csi ≈ 0.7 and 0.82 for T = 6 and 8, respectively.

As anticipated, the firstRm bits of feedback go to CSI, and
zero is allocated to RSI. Thereafter, the CSI remains almost
unchanged (decreases slightly) while the RSI increases. For
T = 6, both CSI and RSI begin to increase simultaneously
after the RSI reaches a certain value while forT = 8 the CSI
remains constant (decreases slightly) as the RSI continues to
increase.

Fig. 2 plotsRm (the first few bits that go into CSI before
feedback bits are assigned to RSI) for different values ofT
corresponding toS = 0dB and 5dB. For S = 0 dB and
approximatelyT ≤ 4, Rcrit

csi < Rmin
csi , so thatRm = Rmin

csi .
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Fig. 1. Optimal CSI and RSI feedback versus total feedback rate.

Note thatRmin
csi is a decreasing function ofT and hence the

trend in the plot. For4 ≤ T ≤ 8, Rm increases approximately
linearly and eventually decreases withT as predicted by the
analytical results. Similar trends are observed forS = 5 dB.

0 5 10 15 20
0

0.5

1

1.5

2

2.5

Coherence Time ( T )

Fi
rs

t  
bi

ts
 in

to
 C

SI
 ( 

R m
 )

Rm = Rcsi
crit

Rm = Rcsi
min

5 dB

0 dB

Fig. 2. Rmin
csi versusT .

Fig. 3 compares the error exponent with the optimal al-
location of feedback bits to the exponent achieved when all
the feedback is allocated to CSI. The range of the horizontal
axis is roughly the minimum to maximum values of CSI per
coherence block. Clearly, allocating bits to RSI can provide
substantial gains in the exponent for the smaller coherence
times. For the larger coherence time it is optimal to allocate
all bits to CSI.

VI. CONCLUSION

The trade-off between CSI and RSI has been studied in the
context of block-fading multicarrier channels. Either CSI or
RSI dominates the allocation as additional feedback becomes
available, where the phase transition of the trade-off depends
critically on the coherence time.
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Fig. 3. Error Exponent versus feedback per coherence block (TRf ) for
different values ofT .

Of course, the results in this paper correspond to the partic-
ular channel model and feedback schemes assumed. Extending
this framework to other channel models and feedback schemes
may provide an interesting direction for future work.
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