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Abstract— We consider an additive white Gaussian noise
(AWGN) channel with partial sequential feedback. Namely, for
every fixed-length block of forward transmissions a fraction of
the received symbols are fed back sequentially to the transmitter
through a noiseless feedback link. It is well known that complete
noiseless feedback can provide a dramatic improvement in
reliability (i.e., double-exponential error rate with block length).
We show that partial feedback can also provide a substantial
improvement in error rate. Specifically, we propose a capacity-
achieving coding scheme with partial feedback, in which the
feedback is used to induce a prior distribution for the decoding
of random forward error control (FEC) codewords. The error-
exponent for this scheme is larger than the error-exponent with
FEC coding only at all rates. For rates greater than those
achieved by transmissions with feedback alone, we give an upper
bound on the error exponent. Exponents close to this bound can
be achieved with both the proposed scheme and a simple rate-
splitting scheme. With finite block lengths, the proposed coding
scheme achieves lower error rates than rate-splitting.

I. I NTRODUCTION

Feedback from the output of a noisy channel to the transmit-
ter can both reduce the complexity of channel coding/decoding
and improve reliability over the communication link. The
availability of feedback, however, can depend on several
factors, including the capacity and availability of a feedback
link, and the processing delay at receiver. Here we consider
an AWGN channel withpartial noiseless feedback, i.e., the
number of feedback transmissions, each representing a single
output symbol, is less than the total number of forward
transmissions. This may occur, for example, due to scheduling,
bandwidth and delay constraints on the feedback link.

Channel coding with complete (sequential) noiseless feed-
back has been traditionally studied in a control theoretic
framework, in which the objective is to drive the receiver
towards a scalar value that corresponds to the message [1],
[3], [4]. In contrast, without feedback efficient FEC codes
have been designed and studied from an information theo-
retic perspective. For the partial feedback channel considered
here, neither approach alone can generally achieve optimal
performance, measured in terms of error rate. Namely, with a
control-based coding scheme alone the transmitter has only
partial observations of the receiver state (i.e., sequence of
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decoder inputs).1 In general, the capacity cannot be achieved
with such schemes (e.g., [1], [3]). Of course, the capacity
can be achieved with an optimal (e.g., random) FEC code,
however, the error rate then does not benefit from feedback.

Here we propose a fixed-lengthhybrid coding scheme with
partial feedback, which is capacity-achieving and combines
the control-based approach with random coding. We show that
the error rate is substantially lower than that achievable with
either approach alone. In this scheme a feedback (control-
based) code is applied to symbols with feedback, and is
used to generate a prior distribution for the decoding of
an FEC (forward) code, which is applied to the symbols
without feedback. The forward code corresponds to the entire
set of messages, so that the forward code rate may exceed
capacity. However, the receiver decodes the forward code with
the maximuma posteriori (MAP) criterion using the prior
distribution from the feedback code. In effect, each message
is assigned two codewords, which jointly assist the decoder.

The transmitted symbols, which are fed back, can occur
anywhere within the message block. Here we focus on the
AWGN channel with Schalkwijk-Kailath (S-K) coding [1] for
transmissions with feedback, and a random forward code.
We compute a lower bound on the error exponent of the
hybrid coding scheme, which is substantially better than the
error exponent without feedback.2 If the number of feedback
transmissions isNf = fN , where0 < f < 1, N is the block
length andC is the channel capacity, then for transmission
rate R < fC the error exponent has an exponential form,
similar to that derived in [1], but with an additional constant
term provided by the forward code. At ratesR ≥ fC the error
exponent corresponds to a(1 − f)N length random forward
code operating at rate(R− fC)/(1− f). We also show that
the corresponding sphere packing error exponent upper bounds
the error exponent in this regime, hence the exponent for the
proposed coding scheme is quite close to this upper bound.

The error rate of the proposed coding scheme is also
compared with therate-splitting scheme in which we have

1In principle, the receiver could mapanyset of received symbols to a single
feedback symbol. With that assumption, the coding scheme proposed in [6]
gives a doubly-exponential decay in error rate. In contrast, we assume that
the feedback depends on asubsetof received symbols.

2The error exponent is redefined to account for double-exponential decay,
and can depend on block length.



independent feedback and feedforward codes operating at
rates, which add up to give an average rate ofR. Those results
show that the proposed scheme can provide significantly lower
error rates with small to moderate block lengths. We also show
that feeding back a linear combination of received symbols
(rather than a particular symbol) can reduce the peak-to-
average power.

A similar partial sequential feedback model to that consid-
ered here is analyzed in [7] for the binary symmetric channel,
although the coding scheme in [7] is substantially different
from that presented here (and does not achieve capacity due to
the use of convolutional codes). Other recent work on limited
and noisy feedback models is presented in [8]–[11]. Our model
differs in that the feedback can be sporadic, but is noiseless,
and is not quantized. Our model also differs from the feedback
models considered in [10]–[12]. Namely, those schemes allow
variable decoding delay and/or the receiver mustcomputean
appropriate feedback signal. Here we consider fixed-length
block codes, where some the received symbols are fed back
directly without processing.

II. T HE HYBRID CODING SCHEME

We consider data transmission through an AWGN channel.
If the scalarx is the input to the channel, then the channel
output is given by

y = x + n (1)

wheren is zero-mean Gaussian noise with varianceσ2, and
is independent for each channel use. Furthermore, the average
power of the inputx is no more thanP . Given the data rate
R nats per channel use and a block length ofN channel uses,
the transmitter transmits one of theM = eRN messages. The
capacity is given by

C =
1
2

log
(

1 +
P

σ2

)
. (2)

In the absence of feedback, this capacity can be achieved
with a random codebook, where the input distribution is
Gaussian with zero mean and varianceP . In that case, the error
exponent, averaged over random codebooks, can be lower-
bounded by Gallager’s exponent [13]

Eg[R] = max
0<ρ≤1

{Eo(ρ)− ρ R} , R < C (3)

where, lettingg(x) andg(y|x) denote the pdf of the Gaussian
input and conditional pdf of output given input, respectively,

Eo(ρ) = − log
[ ∫

y

(∫

x

(g(y|x))1/(1+ρ)g(x)dx

)(1+ρ)

dy

]

=
ρ

2
log

[
1 +

P

σ2(1 + ρ)

]
. (4)

Now suppose thatNf < N received symbols are sequen-
tially available at the transmitter. Those symbols can occupy
arbitrary locations within the packet. The locations are known
a priori to both the transmitter and receiver. It is known that
feedback cannot increase the capacity of this channel [13].
Here we present a capacity-achieving coding scheme, which

exploits the available feedback to improve the reliability of the
decoded message.

Following [1], each message is mapped to one ofM equally
spaced points{θi = i

M : i = 1, . . .M} on the interval
[0, 1]. Assume that thekth message,θk, is to be transmitted.
The S-K coding scheme is used for theNf transmitted
symbols for which feedback is available, which directs the
corresponding estimate at the receiver to the pointθk. Let
Xf =

[
xf1, xf2, . . . xfNf

]
denote the vector of transmitted

symbols with feedback, andYf =
[
yf1, yf2, . . . yfNf

]
denote

the corresponding vector of received symbols. The following
power constraint is satisfied,

1
Nf

E




Nf∑
n=1

x2
fn


 ≤ P (5)

where the expectation is over the channel noise and message
θk.

Proposition 1: Assuming that the messageθk is transmitted
and that all messages are equally likely, the likelihood ratio
induced by the S-K coding scheme∀i 6= k afterNf transmis-
sions is given by

p (θi|Yf )
p (θk|Yf )

= exp
[
− 6α2 Nf

(
θi − θk

)(
θi + θk − 2 θ̂k

)]
(6)

wherep (θi|Yf ) is the conditional probability of messageθi

given Yf ,

α2 =
Nf − 1

Nf
+

P

σ2
(7)

and θ̂k is function ofYf only.
Proofs of our main results are omitted due to the space

limitation. Using the fact thatYf depends onθk and channel
noise, it can be shown that̂θk is a Gaussian random variable
with meanθk and variance1/(12α2 Nf ).

The remainingNc = N − Nf transmissions are used to
transmit an FEC codeword corresponding to the messagek.
The FEC code rate is thereforeR/(1 − f) nats per channel
use, which can exceed the channel capacity. However, we will
see that the prior distribution induced by the feedback code
effectively reduces this rate.

To simplify the analysis we assume a random, Gaussian
FEC code-book for theM messages. LetXc(i) denote the
codeword corresponding to messagei. Letting Yc denote
the vector of received symbols corresponding to the FEC
code, andp(Xc(i)|Yc) denote the posterior probability of
the codewordXc(i) given Yc, the optimal (MAP) receiver
decodes the messagej if3

p (Xc(j)|Yc) ≥ p (Xc(i)|Yc) , ∀i = 1, . . .M. (8)

If the receiver has thea priori message distribution{p(i) :
i = 1, . . . , M}, then, according to the decoding rule (8), the
receiver decodes messagej if

g (Yc|Xc(j)) p(j) ≥ g (Yc|Xc(i)) p(i), ∀i, (9)

3Ties are broken arbitrarily.



where g (Yc|Xc(i)) denotes the likelihood of receivingYc

given Xc(i) is transmitted. Since the transmitted message is
k, the receiver makes an error if the decoded messagej 6= k.

Lemma 1:Let pe(k) denote the probability of decoding
error given that messagek is transmitted, averaged over
randomly generated FEC codebooks. Given the prior message
distribution {p(i) : i = 1, . . . , M}, and the MAP decoding
rule (9), for anyρ ∈ (0, 1],

pe(k) ≤

 ∑

i,i 6=k

(
p(i)
p(k)

)1/(1+ρ)



ρ

· exp [−NcEo(ρ)] . (10)

Now if the receiver uses the distribution induced by S-K
coding as thea priori distribution, assuming the same message
k is transmitted, that isp(i) = p (θi|Yf ) ∀i, then averaging
(10) over the received vectorYf gives

pe(k) ≤ L(θk, ρ) · exp [−NcEo(ρ)] (11)

for any ρ ∈ (0, 1], where

L(θk, ρ) = Eθ̂k

[ ∑

i,i 6=k

(
p (θi|Yf )
p (θk|Yf )

)1/(1+ρ)]ρ

(12)

where the expectation is over̂θk, defined after Proposition 1.
The quantityL(θk, ρ)1/ρ represents theeffectivenumber of

transmitted messages. Namely, in the absence of any feedback
thea priori distribution is uniform overθi, that is,p (θi|Yf ) =
1/M ∀i , so thatL(θk, ρ) = (M − 1)ρ, and (11) reduces
to the conventional random coding error exponent [13]. With
feedback the prior distribution induced by the S-K scheme
effectively reduces the number of candidate messages to be
considered by the decoder.

The bound (11) serves as the basis for the subsequent lower
bound on error exponent for the hybrid coding scheme.

III. E RROREXPONENT WITH PARTIAL FEEDBACK

Let

Pe =
1
M

M∑

k=1

pe(k). (13)

If the error probability decreases exponentially withN , then
the exponent can be defined asE = limN→∞−(log Pe)/N.
Because the error rate can decrease faster than exponentially
with feedback, we use the following more general definition,

lim
N→∞

− log Pe

N
− E(N) = 0 (14)

This definition is consistent with the preceding conventional
definition when the error probability decays exponentially with
N , but also allows the exponent to be a function of the code
lengthN .

The following theorem gives a lower bound on the exponent
for the hybrid coding scheme.

Theorem 1:For the hybrid coding scheme defined in Sec-
tion II, given a fixed ratio of feedback transmissionsf = Nf

N

and normalized data rater = log M
N C = R

C , the error exponent
defined in (14) satisfies

E(N) ≥




3
2 N e[2(f−r)C N ] + (1− f)Eo(1) if 0 < r < f

(1− f)Eg

[ (
r−f
1−f

)
C

]
if f ≤ r < 1

(15)
For the extreme cases of no feedback (f → 0) and full

feedback (f → 1), the bound (15) gives Gallager’s random
coding exponent and an exponential form similar to the one
derived in [1], respectively. For ratesr < f the error exponent
has an exponential form (which is same as the one in [1] except
for a multiplicative factor of half) with an additional constant
term.4 That is, the error rate decays double-exponentially with
block length. This is because the S-K scheme alone can
achieve the raterC without making use of the remaining
(1 − f)N transmissions. The remaining channel symbols are
used by the FEC code, which essentially operates at zero rate
and gives the additional constant term in (15).

For r > f , the error exponent is a (rate-dependent) constant,
i.e., the error rate decays exponentially withN . In this regime,
the S-K scheme cannot achieve the target rate with vanishing
error probability for largeN . Hence the error rate is dominated
by the performance of the FEC code, but with an effective rate
of (r − f)C/(1− f) nats per channel use. This is due to the
prior distribution provided by the S-K coding scheme, which
effectively reduces the number of messages to be considered
as candidates for the FEC decoder. From the convexity ofEg[·]
the exponent in this region is strictly larger than the exponent
with FEC coding only, i.e.,Eg[rC].

Fig. 1 shows plots of the lower bound in Theorem 1 for
different feedback fractionsf . For all of the numerical plots
we take P = 2 and σ2 = 1. For r < f , the curves are
shown as dotted vertical lines to indicate that in this region
the exponent depends onN and is effectively infinite for large
N . The figure shows the transition from double-exponential
error rate forr < f to exponential error rate forr > f .

The dotted straight line (across the corners) in the figure is
(1 − r)Eo(1), which intersects the error exponent atr = f .
It can be seen that the exponent with partial feedback(0 <
f < 1) is strictly larger than the exponent with no feedback
(f = 0) at all rates.

Fig. 2 shows plots of probability of error versus the feedback
fraction f for the finite block lengthN = 100. Here we use
the following bound on probability of error, which is derived
as part of the proof of Theorem 1,

Pe ≤ 8

(
2 +

4
√

2
d

)ρ

exp
[
− ρ2d2

2(1 + ρ)2
− (1− f)Eo(ρ)N

]

(16)
where d =

√
12α(f−r)N , α is given in (7), andρ ∈ (0, 1]

can be chosen to minimize the right-hand side. Two plots are
shown forr = 0.5 and0.6. There is a steep fall, which occurs
when the feedback ratiof crossesr. This is consistent with
the transition from exponential to double-exponential decay.

4The first term differs from the one in [1] by a factor of half, which may
be due to the looseness of the bound (10).
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Fig. 1. The error exponent lower bound versus normalized rate, parameterized
by feedback transmission ratiof .

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1
Performance for N = 100

Feedback Fraction ( f )

U
pp

er
 B

ou
nd

 o
n 

lo
g 10

 (
P

e)

r = 0.6

r = 0.5

Fig. 2. The error probability upper bound versus feedback transmission ratio
f for a code length ofN = 100.

A. Comparison With Rate Splitting

A simple approach to coding with partial feedback is to
split the rate asr = rfb + rff where rfb and rff are the
rates associated with the feedback and feedforward codes,
respectively. That is, given the block lengthN , the fN -
length feedback code has raterfb/f and the(1− f)N -length
forward code has raterff/(1 − f). Letting Pe;fb(rfb) and
Pe;ff(rff) denote the error probabilities associated with these
feedback and feedforward codes, respectively. We can select
rfb to minimize the probability of errorPe;rs = Pe;fb(rfb) +
Pe;ff(rff) − Pe;fb(rfb) Pe;ff(rff). From [1] Pe;fb(rfb) decays
double-exponentially andPe;ff(rff) is upper-bounded by the
random coding bound [13].

For r > f , this rate-splitting scheme achieves the same
error exponent as shown in (15). Namely, ifrfb is slightly
smaller thanf , then for largeN , Pe;fb(rfb) decays double
exponentially, andPe;ff(rff) is the dominant term. AsN grows,
rfb, can be chosen arbitrarily close tof , which gives the

exponent in (15). Forr < f , using the feedback code alone
gives Pe;rs = Pe;fb(rfb), which decays asexp(−3 exp[(f −
rfb)CN ]). For largeN , the corresponding exponent is larger
than that shown in (15) due to the extra factor of half in (15).
For small to moderateN , and rates close tofC, the exponent
in (15) contains an additional constant, and is therefore larger
than that for feedback coding alone.

This is illustrated in Fig. 3, which compares the random cod-
ing upper bound on probability of error for the two schemes
versusN with f = 0.5. Plots are shown forr = 0.492
and r = 0.6. For the rate-splitting scheme,rfb is selected
to minimize Pe;rs. The plot shows that forr = 0.6 the error
probability for the hybrid scheme is only slightly better than
that for rate-splitting. In contrast, forr = 0.492, the error
probability for the hybrid scheme is substantially smaller than
that for rate-splitting or feedback coding alone. Also shown
for comparison is the error probability with forward coding
alone. These plots were generated by computing the random
coding upper bound on the probability of error using (11), as
opposed to using (16), which is slightly looser.
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Fig. 3. The upper bound on the probability of error with random forward
coding for the hybrid scheme and rate-splitting versus block lengthN .

IV. CONVERSE: UPPERBOUND ON ERROREXPONENT

Theorem 1 and the preceding discussion indicate that as
r increases there is a breakpoint atr = f , for which the
error probability for the coding schemes considered transitions
from double-exponential to exponential decay. The following
theorem implies that this is characteristic of all good codes.
Namely, for r > f no coding scheme can achieve an error
probability, which decays faster than exponential with block
length. Although the following theorem is stated for discrete
memoryless channels (DMCs) and AWGN channel, it applies
to a wide class of continuous input/output alphabet channels.

Theorem 2:Consider a DMC or AWGN channel with ca-
pacityCd and sphere packing bound on error exponentEsp[u],
where0 ≤ u ≤ Cd. With partial feedback fractionf < r, the



average probability of error satisfies

lim
N→∞

− log Pe

N
≤ (1− f)Esp

[(
r − f

1− f

)
Cd

]
. (17)

An outline of the proof follows. The probability of error is
first lower bounded by applying [2, Thm 1], where allNf =
fN feedback symbols are placed at the beginning of the block.
The lower bound is the product of probability of error for
the feedback and feedforward component codes. The feedback
code produces a list of messages and a decoding error occurs
only if the transmitted message is not in the list. This lower
bound holds for any list size. Choosing the list size such that
the feedback code operates at a rate slightly more than the
capacity yields a tight lower bound on the probability of error
and hence an upper bound on the exponent. Although [2, Thm
1] was proved only for DMCs without feedback, it can be
shown to hold when feedback is present and/or input-output
alphabets are continuous.

This implies that forr > f , the exponents for the coding
schemes considered are close to optimal. The gap can perhaps
be bridged by replacing the random forward codes with codes
that achieve the sphere packing bound.

V. L INEARLY PROCESSEDFEEDBACK

Here we extend the previous coding scheme to the scenario
in which the receiver is capable of linearly processing the
received symbols to construct an appropriate feedback signal.

Assume that the receiver feeds back a linear combination of
received symbols everyD forward transmissions. Without loss
of generality, each feedback symbol can be seen as the first
element of the processed output vector defined asȲ = UY,
where Y is D × 1 vector of received symbols andU is a
D×D unitary matrix. Since we have an AWGN channel, the
received vectorY = X + n, whereX is theD × 1 vector of
transmitted symbols andn is D × 1 vector of noise samples.
Further, without loss of generality, we can look at the input
as a precoded vectorX = U†X̄ so that the processed output
can be written as,

Ȳ = X̄ + n̄ (18)

where,n̄ = Un is the processed noise vector which contains
independent Gaussian entries with zero mean and varianceσ2.
Note that (18) can be seen as an equivalent additive Gaussian
noise channel on which everyDth received symbol is fed
back to the transmitter. To summarize, an AWGN channel with
linearly processed feedback is equivalent to another AWGN
channel with partial feedback at feedback ratiof = 1/D. Of
course, takingU as the Identity matrix corresponds to the case
of no linear processing, which is our original feedback model.
Clearly, by Theorem 2, even with linear processing for rates
r > 1/D only an exponential decay in error rate is possible.

Although linear processing does not improve the error
exponent it may be beneficial in certain cases. For example,
implementation of the S-K coding scheme in the time domain
exhibits large peak-to-average power [5]. With linear process-
ing, whereU is the DFT matrix, we can implement the S-K

coding in the frequency domain and hence reduce the peak-
to-average power ratio roughly by a factor ofD. Note that the
size of the DFT (determined byD) trades off the peak power
reduction with reliability.

VI. CONCLUSIONS

We have presented a capacity-achieving coding scheme for
the AWGN channel with partial sequential feedback, which
combines feedback-control and FEC. The scheme can achieve
a substantially lower error probability than feedback or feed-
forward coding alone, and also typically performs better than
rate-splitting with finite block lengths. An upper bound on the
error exponent for high rates has been presented, which is
approached by both the hybrid and rate-splitting schemes.

Extensions of this work may include optimizing the power
constraint across the feedback and feedforward codes, and
studying the effect of colored noise. In the latter case, linear
processing of feedback may be useful. Finally, the approach
to coding with partial feedback presented here can be used
with any constituent feedback and FEC coding schemes, and
can be applied to a wide variety of channels.
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