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Abstract—We consider an additive white Gaussian noise decoder inputs).In general, the capacity cannot be achieved
(AWGN) channel with partial sequential feedback. Namely, for with such schemes (e.g., [1], [3]). Of course, the capacity
every fixed-length block of forward transmissions a fraction of can be achieved with an optimal (e.g., random) FEC code

the received symbols are fed back sequentially to the transmitter .
through a noiseless feedback link. It is well known that complete however, the error rate then does not benefit from feedback.

noiseless feedback can provide a dramatic improvement in Here we propose a fixed-lengtlybrid coding scheme with
reliability (i.e., double-exponential error rate with block length).  partial feedback, which is capacity-achieving and combines
We show that partial feedback can also provide a substantial the control-based approach with random coding. We show that
improvement in error rate. Specifically, we propose a capacity- q orror rate is substantially lower than that achievable with
achieving coding scheme with partial feedback, in which the . .
feedback is used to induce a prior distribution for the decoding €ither approach alone. In this scheme a feedback (control-
of random forward error control (FEC) codewords. The error- based) code is applied to symbols with feedback, and is
exponent for this scheme is larger than the error-exponent with used to generate a prior distribution for the decoding of
FEC coding only at all rates. For rates greater than those an FEC (forward) code, which is applied to the symbols
achieved by transmissions with feedback alone, we give an upper, it feedback. The forward code corresponds to the entire
bound on the error exponent. Exponents close to this bound can ’
be achieved with both the proposed scheme and a simple rate-S€t Of messages, so that the forward code rate may exceed
splitting scheme. With finite block lengths, the proposed coding capacity. However, the receiver decodes the forward code with
scheme achieves lower error rates than rate-splitting. the maximuma posteriori (MAP) criterion using the prior
| INTRODUCTION distribution from the feedback code. In effect, each message
' is assigned two codewords, which jointly assist the decoder.
ter can both reduce the complexity of channel coding/decodiggywhere within the message block. Here we focus on the
and improve reliability over the communication link. Theaw/GN channel with Schalkwijk-Kailath (S-K) coding [1] for
availability of feedback, however, can depend on sevekghnsmissions with feedback, and a random forward code.
factors, including the capacity and availability of a feedbadle compute a lower bound on the error exponent of the
link, and the processing delay at receiver. Here we considgfbrid coding scheme, which is substantially better than the
an AWGN channel withpartial noiseless feedback, i.e., theerror exponent without feedbadkf the number of feedback
number of feedback transmissions, each representing a singd@smissions iSV; = fN, where0 < f < 1, N is the block
output symbol, is less than the total number of forwargngth andC is the channel capacity, then for transmission
transmissions. This may occur, for example, due to schedulingie < fC' the error exponent has an exponential form,
bandwidth and delay constraints on the feedback link.  gimilar to that derived in [1], but with an additional constant
Channel coding with complete (sequential) noiseless feagdrm provided by the forward code. At rat&s> fC the error
back has been traditionally studied in a control theoretigyonent corresponds to(a — f)N length random forward
framework, in which the objective is to drive the receivegode operating at rateR — fC)/(1 — f). We also show that
towards a scalar value that corresponds to the message i corresponding sphere packing error exponent upper bounds
[3], [4]. In contrast, without feedback efficient FEC codegne error exponent in this regime, hence the exponent for the
retic perspective. For the partial feedback channel consideredrne error rate of the proposed coding scheme is also

here, neither approach alone can generally achieve optiraglnnared with therate-splitting scheme in which we have
performance, measured in terms of error rate. Namely, with a

Cont_rOI'based demg scheme al_one the transmltter has OnIyln principle, the receiver could mamy set of received symbols to a single
partial observations of the receiver state (i.e., sequence fé&fdback symbol. With that assumption, the coding scheme proposed in [6]
gives a doubly-exponential decay in error rate. In contrast, we assume that
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independent feedback and feedforward codes operatingeaploits the available feedback to improve the reliability of the
rates, which add up to give an average rat&offhose results decoded message.

show that the proposed scheme can provide significantly lower~ollowing [1], each message is mapped to ondbéqually
error rates with small to moderate block lengths. We also sh@paced points{f;, = ﬁ : 4 = 1,...M} on the interval
that feeding back a linear combination of received symbolg, 1]. Assume that thé!" messagefy, is to be transmitted.
(rather than a particular symbol) can reduce the peak-fbhe S-K coding scheme is used for th€; transmitted
average power. symbols for which feedback is available, which directs the

A similar partial sequential feedback model to that consiadorresponding estimate at the receiver to the péjnt Let

ered here is analyzed in [7] for the binary symmetric chann&; = |21, 2,... 2y, denote the vector of transmitted
although the coding scheme in [7] is substantially differesymbols with feedback, an¥l ; = [ys1,yy2,...ysn,| denote
from that presented here (and does not achieve capacity duéh® corresponding vector of received symbols. The following
the use of convolutional codes). Other recent work on limitgzbwer constraint is satisfied,
and noisy feedback models is presented in [8]-[11]. Our model Ny
differs in that the feedback can be sporadic, but is noiseless, LE Z 2 | <p ®)
and is not quantized. Our model also differs from the feedback Ny o frl =
models considered in [10]-[12]. Namely, those schemes allow
variable decoding delay and/or the receiver mumnputean Wwhere the expectation is over the channel noise and message
appropriate feedback signal. Here we consider fixed-length.
block codes, where some the received symbols are fed baclroposition 1: Assuming that the messagg is transmitted
directly without processing. and that all messages are equally likely, the likelihood ratio
induced by the S-K coding scherie # k after N, transmis-
II. THE HYBRID CODING SCHEME sions is given by
We consider data transmission through an AWGN channel.

If the scalarz is the input to the channel, then the channelw =exp | — 602N (91‘ — ek) (ei + 05 — 2(§k) (6)
output is given by p(0klYy)

y=xz+n (1) wherep (6;[Y ) is the conditional probability of message
wheren is zero-mean Gaussian noise with variande and 9"V€" Yy, Ni—1 P
. 2 ;-
is independent for each channel use. Furthermore, the average o = @)

2
power of the inputz is no more thanP. Given the data rate Ny 7
R nats per channel use and a block lengtmMothannel uses, and §,, is function of Y only.

the transmitter transmits one of thig = ¢ messages. The Proofs of our main results are omitted due to the space

capacity is given by limitation. Using the fact thal’ ; depends orf;, and channel
1 P noise, it can be shown thaj, is a Gaussian random variable
C= 5 log (1 + ) (2 with meang,, and variancel /(12 o V).

. . . The remainingN, = N — Ny transmissions are used to
In the absence of feedback, this capacity can be aCh'e‘f?zﬂ'nsmit an FEC codeword corresponding to the message
with a random codebook, where the input distribution iﬁ’he FEC code rate is therefore/(1 — f) nats per channel
Gaussian with zero mean and variaredn that case, the error o \yhich can exceed the channel capacity. However, we will

exponent, averaged over random codebooks, can be IOWELs that the prior distribution induced by the feedback code
bounded by Gallager’'s exponent [13] effectively reduces this rate.

E,[R] = max {FE,(p) — pR}, R<C ) To simplify the analysis we assume a random, Gaussian
0<psl FEC code-book for thel/ messages. LeK. (i) denote the
where, lettingg(z) andg(y|x) denote the pdf of the Gaussiancodeword corresponding to messageletting Y. denote

input and conditional pdf of output given input, respectivelythe vector of received symbols corresponding to the FEC
code, andp(X.(:)|Y.) denote the posterior probability of

(1+p)
E,(p) = —log [/ (/(g(ny))”“*”@(m)dm) dy} the codewordX.(i) given Y., the optimal (MAP) receiver
v \Jz decodes the messagef3
P . . .
= glog [1 + 02(1+P)} 4) p(Xe()|Ye) = p(Xe(i)[Ye), Vi=1,...M. (8)

Now suppose thalV; < N received symbols are sequen-'_f the receiver has tha prio.ri message distr'ibuti0|{p(i) :
tially available at the transmitter. Those symbols can occupy- L. ., M}, then, accqr_dmg to the decoding rule (8), the
arbitrary locations within the packet. The locations are knowfgCeiver decodes messagef
a priori to both the transmitter and receiver. It is known that g (Yo X.(5) p(5) = g (Yol Xe(i)) p(i), ¥, 9)

feedback cannot increase the capacity of this channel [13].
Here we present a capacity-achieving coding scheme, whicHTies are broken arbitrarily.



log M

R
= &, the error exponent

where g (Y.|X.(7)) denotes the likelihood of receiviny,. and normalized data rate=

given X.(7) is transmitted. Since the transmitted message defined in (14) satisfies Me

k, the receiver makes an error if the decoded mesgagé:. B RU-NCN L (1 - fYE,(1) fO<r<f
Lemma 1:Let p.(k) denote the probability of decoding () > 2N 7f . '

error given that messaggé is transmitted, averaged over N (1-1 Egl:(I_f) C} if f<r<i1

randomly generated FEC codebooks. Given the prior message (15)

distribution {p(i) : « = 1,..., M}, and the MAP decoding For the extreme cases of no feedbagk 0) and full

rule (9), for anyp € (0, 1], feedback { — 1), the bound (15) gives Gallager's random

" aem]” 30djngd (_ex;Etl)]nent and_ar: e>|§ponential Tforhm similar to the one
p(i erived in [1], respectively. For rates< f the error exponent
pe(k) < | (p(k)) ~exp[=NeEo(p)]. (10) 1 2s an exponential form (which is same as the one in [1] except
IQor a multiplicative factor of half) with an additional constant
rm# That is, the error rate decays double-exponentially with
ock length. This is because the S-K scheme alone can
achieve the rate'C' without making use of the remaining
(1 — f)N transmissions. The remaining channel symbols are
) < L(g B used by the FEC code, which essentially operates at zero rate
Pe(k) < L(By, p) - exp [=Ne Lo (p)] A1) and gives the additional constant term in (15).
for any p € (0, 1], where Forr > f, the error exponent is a (rate-dependent) constant,
i.e., the error rate decays exponentially with In this regime,
p(0:]Y ) 1/(1+p)qp the S-K scheme cannot achieve the target rate with vanishing
L(Ox,p) = Eg, [ Z (p(@kW)) ] (12)  error probability for largeV. Hence the error rate is dominated
bk ! by the performance of the FEC code, but with an effective rate
. 5 . L of (r — f)C/(1 — f) nats per channel use. This is due to the
where the expectation is ovéf, defined after Proposition 1. orior distribution provided by the S-K coding scheme, which

The quantltyL(Hk, P) represe nis theffectivenumber of eff%ctively reduces the number of messages to be considered
transmitted messages. Namely, in the absence of any feedbac

e prion disbuton s nform ven a0 Y7) —y(STO0ReS OUEFEC tocor B cone it
1/M Vi , so thatL(0,p) = (M — 1)?, and (11) reduces b 9 ylarg P

. : with FEC coding only, i.e.E,[rC].
’ g9

to the convenuopal rgnd_om_codmg error exponent [13]. Wit Fig. 1 shows plots of the lower bound in Theorem 1 for
feedback the prior distribution induced by the S-K schem . .

. . ifferent feedback fractiong. For all of the numerical plots
effectively reduces the number of candidate messages to_be 2

. we takeP = 2 ando* = 1. Forr < f, the curves are
considered by the decoder.

The bound (11 the basis for th b ] shown as dotted vertical lines to indicate that in this region
e bound (11) serves as the asis for the subsequent loger exponent depends @ and is effectively infinite for large
bound on error exponent for the hybrid coding scheme.

N. The figure shows the transition from double-exponential
error rate forr < f to exponential error rate far > f.
The dotted straight line (across the corners) in the figure is

iitk

Now if the receiver uses the distribution induced by S—t

coding as the priori distribution, assuming the same messagD%

k is transmitted, that i®(:) = p (6;[Y ;) Vi, then averaging
(10) over the received vectd ; gives

I1l. ERROREXPONENT WITH PARTIAL FEEDBACK

Let (1 —r)E,(1), which intersects the error exponentrat f.
P 1Y s 13 It can be seen that the exponent with partial feedb@ck:
e M ;ps( )- (13) f < 1) is strictly larger than the exponent with no feedback

(f =0) at all rates.
If the error probability decreases exponentially with then Fig. 2 shows plots of probability of error versus the feedback
the exponent can be defined As= limy_... —(log P.)/N. fraction f for the finite block lengthv = 100. Here we use
Because the error rate can decrease faster than exponentthltyfollowing bound on probability of error, which is derived
with feedback, we use the following more general definitioras part of the proof of Theorem 1,

_ logP. 12\’ p2d?
lim — —FE(N)=0 14 < Ve __ 77 (1_
Aim —— (V) (14) P. <3 <2+ y ) exp{ s~ (- DB
This definition is consistent with the preceding conventional (16)

definition when the error probability decays exponentially withhered = v12a/""N, o is given in (7), andp € (0,1]
N, but also allows the exponent to be a function of the cod@n be chosen to minimize the right-hand side. Two plots are

length N. shown forr = 0.5 and0.6. There is a steep fall, which occurs
The following theorem gives a lower bound on the exponeWhen the feedback rati¢ crossesr. This is consistent with
for the hybrid coding scheme. the transition from exponential to double-exponential decay.

_ Theor?m 1:For the h_ybrid coding scheme Qefined i?\, S€C- 4The first term differs from the one in [1] by a factor of half, which may
tion Il, given a fixed ratio of feedback transmissiofis= </  be due to the looseness of the bound (10).



exponent in (15). For < f, using the feedback code alone

0% : gives P...s = Pe.(rs), which decays asxp(—3exp|[(f —
£ 03f rw)CN]). For largeN, the corresponding exponent is larger
§ than that shown in (15) due to the extra factor of half in (15).
@ -2 For small to moderaté&/, and rates close tfC', the exponent
S 0.2} in (15) contains an additional constant, and is therefore larger
”gJ than that for feedback coding alone.
5 015} This is illustrated in Fig. 3, which compares the random cod-
é ol ing upper bound on probability of error for the two schemes
& versus N with f = 0.5. Plots are shown for = 0.492
50,05, and r = 0.6. For the rate-splitting schemey, is selected
v to minimize P,,s. The plot shows that for = 0.6 the error
% 02 04 06 08 1 probability for the hybrid scheme is only slightly better than

r——> that for rate-splitting. In contrast, for = 0.492, the error
probability for the hybrid scheme is substantially smaller than
that for rate-splitting or feedback coding alone. Also shown
for comparison is the error probability with forward coding
alone. These plots were generated by computing the random
Performance for N = 100 coding upper bound on the probability of error using (11), as
o opposed to using (16), which is slightly looser.

Fig. 1. The error exponent lower bound versus normalized rate, parameteri
by feedback transmission ratjtx

/g |

Random Coding Upper Bound on IoglO(Pe)

Performance for f = 0.5
j + g r=0.6, Rate Splitting
_4 +@ ' r=0.6, Hybrid Scheme
@ r=0.6 FEC

!
o
T

‘B.,| —=—r=0.492, Feedback Part Only
—v— r =0.492, Rate Splitting
—6—r =0.492, Hybrid Scheme
—8—r=0.492, FEC

|
o
T
i
3
T

Upper Bound on Iog10 (Pe)
4

|
©
T

-9t

|
i
o
T

-10 i i i i i i i i
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

Feedback Fraction (f)

Fig. 2. The error probability upper bound versus feedback transmission ratio s

f for a code length ofV = 100. 0 50 100 150 200 250 300
Block Length (N) ——>

Fig. 3. The upper bound on the probability of error with random forward

A. Comparison With Rate Splitting coding for the hybrid scheme and rate-splitting versus block length

A simple approach to coding with partial feedback is to
split the rate asr = rg + r¢ Where rq, and rg are the
rates associated with the feedback and feedforward codes). CoNVERSE UPPERBOUND ON ERROREXPONENT
respectively. That is, given the block lengtN, the fN-
length feedback code has ratg/f and the(1 — f)N-length Theorem 1 and the preceding discussion indicate that as
forward code has rateg/(1 — f). Letting P.w(rn) and r increases there is a breakpointsat= f, for which the
P..«(r¢) denote the error probabilities associated with theseror probability for the coding schemes considered transitions
feedback and feedforward codes, respectively. We can seligotm double-exponential to exponential decay. The following
rg t0 minimize the probability of erroP..,s = P..a(rs) + theorem implies that this is characteristic of all good codes.
P.s(re) — Pep(rep) Pee(rer). From [1] P..s(rs) decays Namely, forr > f no coding scheme can achieve an error
double-exponentially and’..¢(r) is upper-bounded by the probability, which decays faster than exponential with block
random coding bound [13]. length. Although the following theorem is stated for discrete
For r > f, this rate-spliting scheme achieves the santeemoryless channels (DMCs) and AWGN channel, it applies
error exponent as shown in (15). Namely,rif is slightly to a wide class of continuous input/output alphabet channels.
smaller thanf, then for largeN, P..g(rs) decays double  Theorem 2:Consider a DMC or AWGN channel with ca-
exponentially, and®...« (1) is the dominant term. A% grows, pacity Cy and sphere packing bound on error expongnfu,
ri, Can be chosen arbitrarily close th which gives the where0 < u < Cy. With partial feedback fractiorf < r, the



average probability of error satisfies coding in the frequency domain and hence reduce the peak-

log P r— f to-average power ratio roughly by a factor Bf Note that the
Nlim — %V S<(1-f)Es — Cdl (17) size of the DFT (determined h#) trades off the peak power
An outline of the proof follows. The probability of error is"eduction with reliability.
first lower bounded by applying [2, Thm 1], where &l = VI. CONCLUSIONS

fN feedback symbols are placed at the beginning of the block. PR .
The lower bound is the product of probability of error for We have presented a capacity-achieving coding scheme for

the AWGN channel with partial sequential feedback, which
th%fee?b;ck and Eefdl;or:]ward comp(r)]r&ent dCOd%Sir']Th?rferedbgg}bines feedback-control and FEC. The scheme can achieve
code produces a lIst of messages and a decocing erro oc%us%bstantially lower error probability than feedback or feed-

only if the transmitted message is not in the list. This lower . .
bound holds for any list size. Choosing the list size such tﬁ[gtmard coding alone, and also typically performs better than

. te-splitting with finite block lengths. An upper bound on the
the feedback code operates at a rate slightly more than eﬁ: or exponent for high rates has been presented, which is

capacity yields a tight lower bound on the probability of errof . o
proached by both the hybrid and rate-splitting schemes.
and hence an upper bound on the exponent. Although [2, Th xtensions of this work may include optimizing the power

gms tgr?‘\ﬁg vf/);:gn f?;egix ((';’E i‘g"“}gg;:\f?ﬂ?}gl:’ir:t Sigu?%qnstraint across the feedback and feedforward codes, and
: P P ps"{udying the effect of colored noise. In the latter case, linear
alphabets are continuous. . f feedback b ful. Einallv. th h
This implies that forr > f, the exponents for the codingloroces.Slng of feedback may be useiul. Finally, the approac
schemes considered are cloée t0 optimal. The aap can erhto coding with partial feedback presented here can be used
be bridged by replacing the randompforwérd cogez with ICéod any constituent feedback and FEC coding schemes, and
ged by rep g . &3n be applied to a wide variety of channels.
that achieve the sphere packing bound.
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