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Abstract— This paper studies the entropy and filtering of
hidden Markov processes (HMPs) which are observations of
discrete-time binary homogeneous Markov chains through an
arbitrary memoryless channel. A fixed-point functional equation
is derived for the stationary distribution of an input symbol
conditioned on all past observations. While the existence of a
solution to this equation is guaranteed by martingale theory, its
uniqueness follows from contraction mapping property. In order
to compute this distribution, the fixed-point functional equation is
firstly converted to a linear system through quantization and then
solved numerically using quadratic programming. The entropy
or differential entropy rate of the HMP can be computed in two
ways: one by exploiting the average entropy of each input symbol
conditioned on past observations, and the other by applying a
relationship between the input-output mutual information and
the stationary distribution obtained via filtering. Two examples,
where the numerical method is applied to the binary symmetric
channel (BSC) and additive white Gaussian noise (AWGN)
channel, are presented. Unlike many other numerical methods,
this numerical solution is not based on averaging over a long
sample path of the HMP.

I. I NTRODUCTION

Let {Xn} be a binary Markov chain with symmetric
crossover probabilityε. Let {Yn} be the observation of{Xn}
through an arbitrary memoryless channel. Conditioned onXk,
the past, current and future observations, namely,Y k−1

−∞ , Yk

and Y ∞
k+1, are independent. Without conditioning, however,

the output{Yn} is not a Markov process. Such a process is
called a hidden Markov process (HMP). The entropy (resp.
differential entropy) rate of discrete (resp. continuous) HMPs
is a classical open problem.

The entropy of HMPs has been studied since as early as
the 1950s. Blackwell obtained an expression of the entropy
in terms of a probability measure, which is the distribution of
the conditional distribution ofX0 given the past observations
Y 0
−∞ [1]. Blackwell’s work was followed by several authors

who studied HMPs from the estimation-theoretic (filtering)
viewpoint. In 1965, Wonham [2] used stochastic differential
equation to study the evolution of theposterior probability
distribution of the dynamical state given the output perturbed
by Gaussian noise. Recently, Ordentlich and Weissman [3]
presented a new approach for bounding the entropy rate of
HMP by constructing an alternative Markov process. The
stationary distribution of this Markov process determines the
quality of estimatingXn using the past observationsY n

−∞.
Furthermore, Nairet al. [4] used the techniques in [3] to

study the behavior of filtering error probability and obtained
tight bounds of the entropy rate in the rare-transition regime,
i.e. when ε is small. A recent overview of statistical and
information-theoretic aspects of HMPs is presented in [5].

In absence of an analytical solution, some other works
use Monte Carlo simulation [6], sum-product method [7] and
prefixsets method [8] to numerically compute the entropy rate
by averaging over a long, random sample path of the HMP.
In addition, some deterministic computation methods based on
quantized systems are suggested in [9] and [10] independently.
In [9], density evolution is applied to a “forward variable” after
quantization to obtain the stationary distribution of this vari-
able. Reference [10] solves a linear system for the stationary
distribution of the quantized Markov process to obtain a good
approximation of the entropy rate.

This paper studies the entropy rate of HMPs using filtering
techniques and numerical methods. A fixed-point functional
equation whose solution characterizes the stationarydistri-
bution of the conditional distribution of X0 given the past
observationsY 0

−∞ is derived in Section II. The existence
of a solution to this equation is guaranteed by martingale
theory, and Section III shows that the uniqueness is due to
a contraction mapping property. Since no explicit analytical
solution to this equation is known, a numerical method is
developed in Section V using quadratic programming, which
gives a good approximation. In addition, the entropy rate and
the input-output mutual information are computed by two
different methods. Like the numerical methods in [9] and [10],
the scheme in this paper does not require a very long sample
path of the HMP; rather, it is based on a direct computation of
the filtering probability measure. While the numerical method
provided in [10] quantizes the likelihood process, the scheme
in this paper quantizes the fixed-point functional equation.

II. ENTROPY RATE

Let {Xn} be a stationary binary symmetric Markov chain
with alphabetX = {+1,−1} and crossover probabilityε ∈
(0, 1/2). Let {Yn} be the observation of{Xn} through a
stationary memoryless channel characterized by two transition
probability distributionsPY |X(·|x), x = ±1, with alphabet
Y ⊂ R.

SupposeY is discrete. For everyn = 1, 2, . . . , the entropy
is related to the input-output mutual information of the channel



by
H(Y n

1 ) = nH(Y |X) + I (Xn
1 ;Y n

1 ) (1)

whereH(Y |X) is the conditional entropy of the memoryless
channel. Note that in case the alphabetY is continuous and
that PY |X(·| ± 1) are densities, we shall replace the entropies
in (1) by corresponding differential entropies. As far as the
entropy or differential entropy of the output is concerned, it
suffices to study the mutual information.

The input-output mutual information can also be written as

lim
n→∞

1
n

I(X1 . . . Xn;Y1 . . . Yn)

= H2(ε)− lim
n→∞

1
n

H(X1 . . . Xn|Y1 . . . Yn) (2)

= H2(ε)−H(X1|X0, Y
∞
1 ) (3)

whereH2(·) is the binary entropy function.
One can treatH(X1|X0, Y

∞
1 ) in (3) as the expectation of

the binary entropy ofX1 conditioned onX0, Y
∞
1 , i.e.,

H(X1|X0, Y
∞
1 ) = E

{
H2(PX1|X0,Y ∞

1
(+1|X0, Y

∞
1 ))

}
(4)

where the conditional probabilityPX1|X0,Y ∞
1

(+1|X0, Y
∞
1 )

is a random number in[0, 1] dependent ofX0 and Y ∞
1 .

Consequently, in order to compute the entropy or input-output
mutual information of the HMP, it suffices to obtain the
distribution ofPX1|X0,Y ∞

1
(+1|X0, Y

∞
1 ).

Note that for givenx andy,

PX1|X0,Y1,Y ∞
2

(X1|x, y, Y ∞
2 )

=
PX1,X0,Y1|Y ∞

2
(X1, x, y|Y ∞

2 )
PX0,Y1|Y ∞

2
(x, y|Y ∞

2 )
(5)

=
PX1|Y ∞

2
(X1|Y ∞

2 )PX0|X1(x|X1)PY |X(y|X1)∑
x′=±1

PX1|Y ∞
2

(x′|Y ∞
2 )PX0|X1(x|x′)PY |X(y|x′)

. (6)

The distributions ofPXi|Y ∞
i+1

(+1|Y ∞
i+1) is well-defined for

every i = 0, ±1, . . . , on theσ-algebra generated byY ∞
i+1.

In fact, the distributions for alli are also identical, which
is a direct consequence of the following proposition and the
stationarity of the HMP.

Proposition 1: As n →∞,

PX0|Y n
1

(+1|Y n
1 ) → PX0|Y ∞

1
(+1|Y ∞

1 ) (7)

holds with probability 1.
Proof: For everyn = 1, 2, . . . , define the conditional

expectationZn such that

Zn = E
{

1{X0=+1}
∣∣ Y n

1

}
= PX0|Y n

1
(+1|Y n

1 ). (8)

Denote byFn the σ-algebra generated byY n
1 . Then {Fn :

n = 1, 2, . . . } is a filtration and{(Zn,Fn) : n = 1, 2, . . . }
is a Doob martingale. BecauseZn is uniformly bounded by
1, by Doob’s martingale convergence theorem [15, Theorem
13.3.7],

E
{

1{X0=+1}
∣∣ Y n

1

}
→ E

{
1{X0=+1}

∣∣ Y ∞
1

}
(9)

with probability 1.

Note the above proof is also valid for convergence of
probability distribution of PX0|Y n

1
(+1|Y n

1 ) conditioned on
X0 = +1 becausePX0|Y n

1
(+1|Y n

1 ) is a function ofY n
1 and

conditioning only changes the probability measure defined on
the σ-algebra generated byY n

1 .
Define the likelihood ratio of a binary random variableB

with any observationU as

ΛB(U) =
PB|U (+1|U)
PB|U (−1|U)

. (10)

Then the computation of entropy rate boils down to obtaining
the distribution of the log-likelihood ratio

Li+1 = log ΛXi(Y
∞
i+1) . (11)

Note thatLi, i = 0, ±1, . . . , are identically distributed.
In the remainder of this section, we show that the distribu-

tion of Li satisfies a fixed-point functional equation using the
fact thatLi is a function ofLi+1 andYi.

A. Symmetric Channels

Let {Yn} be the observation of{Xn} through a sym-
metric memoryless channel characterized byPY |X(y|x) =
PY |X(−y|−x). Let the cumulative distribution function (cdf)
of Li+1 conditioned onXi = +1 be denoted byF (·), i.e.,

F (l) = Pr{Li+1 ≤ l|Xi = +1} . (12)

Theorem 1:The conditional cdfF satisfies

F

(
log

ε + (1− ε)ex

εex + (1− ε)

)
= ε + E {(1− ε)F (x− r(W ))− εF (−x− r(W ))} (13)

for everyx ∈ R, whereW ∼ PY |X(·|+ 1), and

r(y) = log
PY |X(y|+ 1)
PY |X(y| − 1)

. (14)

Proof: The log-likelihood ratioLi defined in (11) accepts a
natural bound as follows

|Li| ≤ log
1− ε

ε
, (15)

because in terms of estimatingXi−1, providing Y ∞
i is no

better than providingXi.
Use FU |V (u|v) to denote the cdf of random variableU

conditioned onV = v, i.e.

FU |V (u|v) = Pr {U ≤ u|V = v} (16)

The key of the proof is the following evolution, which
follows from the Bayes’ rule and definition (11)

Li = log
PXi−1|Y ∞

i
(+1|Y ∞

i )
PXi−1|Y ∞

i
(−1|Y ∞

i )
(17)

= log
PY ∞

i |Xi−1(Y
∞
i |+ 1)

PY ∞
i |Xi−1(Y

∞
i | − 1)

(18)

= log
eα+r(Yi)+Li+1 + 1
er(Yi)+Li+1 + eα

, (19)

whereα = log[(1− ε)/ε].



Define

hε(l) = log
(1− ε)el − ε

(1− ε)− εel
(20)

which is a monotonically increasing function ofl ∈ (−α, α).
Then

Li+1 = hε(Li)− r(Yi) . (21)

Clearly, by changing the variable,

FLi|Yi,Xi
(l|y, x) = FLi+1|Yi,Xi

(hε(l)− r(y)|y, x) (22)

= FLi+1|Xi
(hε(l)− r(y)|x), (23)

and thus

FLi|Xi
(l|x) =

∫
Y

FLi|Yi,Xi
(l|y, x) dPY |X(y|x) (24)

=
∫
Y

FLi+1|Xi
(hε(l)− r(y))|x)dPY |X(y|x) .

(25)

Also, becauseLi is a function ofY ∞
i , one can get

FLi|Xi−1(l|x) = (1− ε)FLi|Xi
(l|x) + εFLi|Xi

(l| − x). (26)

Since Li are identically distributed even conditioned on
Xi−1 = +1, one can defineF (l) ≡ FLi|Xi−1(l| + 1), l ∈ R.
Furthermore, note the following fact by symmetry,

FLi|Xi−1(l|x) = 1− FLi|Xi−1 (−l| − x) . (27)

Substituting from (25) into (26) and lettingx = +1 yields

F (l) = E {(1− ε)F (hε(l)− r(W ))
+ε (1− F (−hε(l)− r(W )))} . (28)

The inverse ofhε(l) is

qε(x) = log
ε + (1− ε)ex

εex + (1− ε)
(29)

for x ∈ R.
Equation (28) becomes (13) by lettingx = hε(l) and hence

l = qε(x).

B. Non-symmetric Channels

Consider a channel characterized byPY |X(·| + 1) and
PY |X(·| − 1) which are in general not symmetric. LetF+(·)
(resp.F−(·)) denote the cdf ofLi conditioned onXi−1 = +1
(resp.Xi−1 = −1).

Theorem 2:The conditional cdfsF+ andF− satisfy[
F+(qε(x))
F−(qε(x))

]
=

[
1− ε ε

ε 1− ε

] [
E {F+(x− r(U))}
E {F−(x− r(V ))}

]
(30)

for everyx ∈ R, whereqε(x) is given in (29),U ∼ PY |X(·|+
1), V ∼ PY |X(·| − 1), andU , V are independent.

The proof is straightforward using the same technique
developed in the proof of Theorem 1.

Note that in [3] and [10], Ordentlich and Weissman studied
the filtering process from a different perspective using an alter-
native Markov process. Formulas (13) and (30) in the special
case of discrete memoryless channels were also established.

III. U NIQUENESS OFSOLUTION TO THE FIXED-POINT

FUNCTIONAL EQUATION

An explicit solution to the fixed-point functional equations
(13) and (30) is not available, despite the following result.

Proposition 2: The fixed-point functional equation (13) ad-
mits no more than one solution as a cdf.

Proof: First, rewrite (13) as (28) with the variablel
replaced byu. Let S denote the set of cdfs whose corre-
sponding probability measure has support within in the region
[− log(1− ε)/ε, log(1− ε)/ε], which is denoted asΩ. For any
two cdfsF1 andF2 in S, the L1 distanced(F1, F2) is given
by the following

d(F1, F2) =
∫

R
|F1(u)− F2(u)|du. (31)

Define the operatorΨ over the setS as

(ΨF )(u) =

 0, u < − log 1−ε
ε ;

G(u), u ∈ Ω;
1, u > log 1−ε

ε .
(32)

where

G(u) = E
{
(1− ε)F (hε(u)− r(W ))

+ ε (1− F (−hε(u)− r(W )))
}
.

(33)

For simplicity, denotef1(x)−f2(x) as{f1−f2}(x) where
f1 andf2 are two functions. The key to the proof is the fact
that Ψ is a contraction mapping under theL1 distance.

For any two cdfsF1, F2 ∈ S,

d(ΨF1,ΨF2)

=
∫

Ω

∣∣∣E{
(1− ε){F1 − F2}(hε(u)− r(W ))

+ ε{F2 − F1}(−hε(u)− r(W ))
}∣∣∣du (34)

≤
∫

Ω

E
{∣∣∣(1− ε){F1 − F2}(hε(u)− r(W ))

+ ε{F2 − F1}(−hε(u)− r(W ))
∣∣∣}du (35)

≤
∫

Ω

E
{

(1− ε)
∣∣{F1 − F2}(hε(u)− r(W ))

∣∣
+ ε

∣∣{F2 − F1}(−hε(u)− r(W ))
∣∣}du (36)

= E
{∫

Ω

[
(1− ε)

∣∣{F1 − F2}(hε(u)− r(W ))
∣∣

+ ε
∣∣{F1 − F2}(−hε(u)− r(W ))

∣∣]du
}

(37)

where (35) and (36) follow from Jenson’s inequality, and the
order of integration and expectation is changed in (37) using
Tonelli’s theorem [11, p. 183].



Note thatqε(·) defined in (29) is the inverse ofhε(·). For the
first term in the integrand of (37), one can obtain the following∫

Ω

∣∣F1(hε(u)− r(W ))− F2(hε(u)− r(W ))
∣∣du

=
∫

R

∣∣F1(t)− F2(t)
∣∣q′ε(t + r(W ))dt (38)

≤ (1− 2ε)
∫

R

∣∣F1(t)− F2(t)
∣∣dt (39)

with the inequality justified by the fact thatq′ε(t) ≤ 1− 2ε for
all t ∈ R.

Similarly, one can upper bound the second term in (37),
which, together with (39), leads to

d(ΨF1,ΨF2) ≤ (1− 2ε)d(F1, F2) (40)

with 0 < 1− 2ε < 1. Therefore,Ψ is a contraction mapping.

Note that the solution to (13) is a fixed point of the operator
Ψ. Suppose there exist two cdfsF ∗

1 andF ∗
2 in S which satisfy

(13), by the contraction mapping property ofΨ, one can get
the following inequality

d(F ∗
1 , F ∗

2 ) = d(ΨF ∗
1 ,ΨF ∗

2 ) ≤ (1− 2ε)d(F ∗
1 , F ∗

2 ). (41)

The inequality (41) implies thatd(F ∗
1 , F ∗

2 ) = 0. That is,F ∗
1

andF ∗
2 must be the same cdf.

Note that the result in Proposition 2 also applies to (30)
which can be shown using the same contraction mapping
argument.

IV. COMPUTATION OF ENTROPY RATE AND MUTUAL

INFORMATION

In this section, we propose two methods for computing the
input-output mutual information and hence the entropy rate of
HMPs.

A. Direct Method

Recall (1) and (3), the direct method only requires
computing the conditional entropyH(X1|X0, Y

∞
1 ). Here,

we re-derive the expression for the conditional probability
PX1|X0,Y ∞

1
(+1|X0, Y

∞
1 ) as

PX1|X0,Y ∞
1

(+1|X0, Y
∞
1 )

=
PX1|Y ∞

2
(+1|Y ∞

2 )PX0|X1(X0|+ 1)PY |X(Y1|+ 1)∑
x′=±1

PX1|Y ∞
2

(x′|Y ∞
2 )PX0|X1(X0|x′)PY |X(Y1|x′)

(42)

=
(
1 + exp [−αX0 − r(Y1)− L2]

)−1
. (43)

Therefore, in view of (4), one can write

H(X1|X0, Y
∞
1 )

= E

{
H2

(
1

1 + exp [−αX0 − r(Y1)− L2]

) ∣∣∣∣ X0, Y1

}
.

(44)

Also note that for givenx andy

PL2|X0,Y1(l|x, y)

=

∑
x′∈{±1} PL2,X0,X1,Y1(l, x, x′, y)

PX0,Y1(x, y)
(45)

=
PX0,X1,Y1(x,+1, y) dF (l)

dl

PX0,Y1(x, y)

+
PX0,X1,Y1(x,−1, y)−dF (−l)

dl

PX0,Y1(x, y)
. (46)

Therefore, in order to compute the entropy, it suffices to
solve the fixed-point functional equation (13) (or (30)).

B. Computation Via an Information-Estimation Formula

One can also compute the input-output mutual information
of HMPs using a fundamental information–estimation rela-
tionship. In the following the computation is illustrated using
the special case of binary symmetric channel (BSC). The
following is a variant of a result due to Palomar and Verdú
[12].

Proposition 3 ( [12]): Let {Xn} and {Yn} be the respec-
tive input and output of a BSC with crossover probability
δ ∈ (0, 1). For every input distributionPXn ,

lim
n→∞

1
2n

d
dδ

I(Xn
−n;Y n

−n) = E

{
Λ− 1
Λ + 1

log
Λ + e−β

Λ + eβ

}
− β

(47)
whereΛ takes the limiting distribution of the likelihood ratio
ΛXi(Y

n\i

) with Y
n\i

= (Y i−1
−n , Y n

i+1) asn > 2i →∞.
Note that one can decomposeΛXi

(Y
n\i

) as follows,

log ΛXi(Y
n\i

) = log ΛXi(Y
i−1
−n ) + log ΛXi(Y

n
i+1) . (48)

Thus, the limit distribution ofΛXi
(Y

n\i

) as n → ∞ is easy
to compute because the respective distribution ofΛXi

(Y i−1
−∞ )

andΛXi
(Y ∞

i+1) can be solved from the fixed-point functional
equations by Theorem 1 or 2.

Since the right hand side of (47) can be evaluated for every
0 < δ < 1/2, the mutual information for any givenδ ∈ (0, 1)
can be obtained as an integral, also using the fact that the
mutual information is equal to 0 withδ = 1/2.

V. NUMERICAL METHODS

Since no explicit analytic solution to the fixed-point func-
tional equations is known, we develop numerical method to
compute it in this section.

Note thatLi accepts a natural bound (15), one can sample
F (·) arbitrarily finely to obtain a good approximation. Here
we give some examples to illustrate how this quantization-
based method can be applied to solving fixed-point func-
tional equations arising in this paper. One may also find that
reference [10], as well, utilizes a linearized system method
to approximate the stationary distribution of an alternative
Markov process. The method in this paper differs from the
one in [10] by discretizing the fixed-point functional equation
while the one in [10] discretizing the transition matrix of the
alternative Markov process.



A. Example 1: Binary Symmetric Channel

For a BSC with crossover probabilityδ ∈ (0, 1/2), the
fixed-point equation can be written as:

F (qε(x)) = (1− ε)(1− δ)F (x− β) + (1− ε)δF (x + β)
+ ε(1− δ)(1− F (−x− β))
+ εδ(1− F (−x + β)) (49)

for everyx ∈ R, whereβ = log(1/δ − 1).

In fact, the log-likelihood ratioLi accepts a bound which
is tighter than (15). Let the supremum ofLi be x∗, which is
given in [3], and derived here for completeness. Sinceqε(x) is
an increasing contraction mapping ofx for everyε, x∗ satisfies
the following boundary condition

qε(x∗ + β) = x∗ (50)

which gives

x∗ = log

[
eα(1− e−β)

2
+

√
e2α(1− e−β)2

4
+ e−β

]
. (51)

Thus, one can apply a quantizer withM levels to [−x∗ −
β, x∗ + β], and denote the resulted sample sequence byx̂.
Denote theM -sample sequence ofF (·) evaluated on̂x by an
M × 1 vectorF . Since the right hand side of (49) is a linear
combination of shifted versions ofF (·), one can multiply
F by a matrix K together with the help of an auxiliary
constant vectord to obtain the discretized expression. The
discretization of left hand side of (49) involves quantizing
the logarithm, which is a contraction mapping fromR to
(−α, α). One can simply quantize the values ofF (·) evaluated
at qε(x̂i), i = 1, · · · ,M , where x̂i is the ith element of
x̂, to the nearest sample point inF . This can be done by
pre-multiplyingF by a scrambling matrixP . Thus, one can
convert the non-linear fixed-point functional equation (49) to
the following linear system

PF = d + KF . (52)

When a uniform quantizer is used, the matricesP and K
have the structure depicted in Fig. 1 and Fig. 2 respectively.
In Fig. 1, the elements on the curve are all 1’s and the rest of
the elements in the matrix are 0’s. In Fig. 2, all elements on
line (1) take the value(1− ε)(1− δ), all elements on line (2)
take the value(1− ε)δ, on line (3) take the value−ε(1− δ)
and on line (4) take the value−εδ. The rest of the elements
in the matrix are 0’s.

There are many different ways for numerically solving
the linear system (52), such as Gaussian elimination and
QR factorization. Some are quite efficient if we utilize the
sparsity of the matricesP and K. For ease of imposing the
monotonicity of the cdfF , we choose to solve the following

Fig. 1. Structure of MatrixP Fig. 2. Structure of MatrixK

quadratic programming with linear convex constraints.

min
F

‖(K−P)F + d‖2 (53)

s.t. Fi = 0, 1 ≤ i ≤ M1;
Fi − Fi−1 ≥ 0, M1 + 1 ≤ i ≤ M1 + M2 + 1;
Fi = 1, M1 + M2 + 1 ≤ i ≤ M1 + M2 + M3 ,

whereFi denotes theith element ofF , andM1, M2 andM3

denote the number of samples in the intervals[−x∗−β,−x∗),
[−x∗, x∗] and (x∗, x∗ + β] respectively.

Since the feasible region of the quadratic programming
is a compact convex set, the optimal solution exists. The
uniqueness of solution requires a detailed study on the matrix
(K − P), which in general is difficult. Fortunately, since the
cdf of Li conditioned onXi−1 = +1 is unique, this quadratic
programming does give a unique solution when the maximum
sampling interval length is small.

There are many methods for solving the quadratic program-
ming problem (53), among which we use the active set method
[13]. Although the number of iterations depends on the initial
test value, this method can give a quadratic convergence rate
[14], which makes the entire computation fast.

Once the cdfF (·) is obtained, the entropy and input-output
mutual information can be computed using either the direct
method (see Section IV-A) or an information-estimation rela-
tionship (see Section IV-B). If the latter method is employed,
one can utilize FFT and IFFT to compute the distribution of
the left hand side of (48) conditioned on eitherXi = −1 or
Xi = +1, because the pdf of the sum of two independent
random variables is the convolution of the pdf of each of
the two random variables. As long as the distributions of
log Λ conditioned respectively onXi = −1 and Xi = +1
are obtained, one can average them with equal probability to
obtain the distribution oflog Λ.

Fig. 3 gives the numerical results for BSC. The entropy rate
of the output process is plotted as a function ofε and δ. A
uniform quantizer is used for computation.

B. Example 2: AWGN Channel

For AWGN channel described by the following model

Y =
√

γX + N (54)
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Fig. 3. Entropy Rate of BSC with respect to the transition probability of the
Markov chainε and that of the BSCδ.

whereN ∼ N (0, 1), the conditional cdfF satisfies

F (qε(x)) = ε + E {(1− ε)F (x− 2W )− εF (−x− 2W )}
(55)

for everyx ∈ R, W ∼ N (
√

γ, 1).
To linearize (55), one needs to also quantize the support of

distribution ofW . Because it is a standard Gaussian distribu-
tion, one can take samples on a finite interval, e.g.[−5, 5],
and get a good approximation. In this case, the right hand
side in linearized (55) will be expressed as the superposition
of shifted versions ofF (·) due to different quantization levels
of W . The matrixK in (52) is dense in this case.

Numerical results for AWGN channel with a uniform quan-
tizer is illustrated in Fig. 4. The differential entropy rate is
plotted as a function of the crossover probabilityε and the
signal-to-noise ratioγ.
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Fig. 4. Differential Entropy Rate of AWGN Channel w.r.t.δ andγ.

VI. CONCLUSION

This paper derives fixed-point functional equations to char-
acterize the stationary distribution of an input symbol from
a binary symmetric Markov chain conditioned on the past
observations under general channel models. The existence and

uniqueness of the solution to such a fixed-point functional
equation are justified using the martingale theory and a con-
traction mapping property respectively. Although in general
these equations cannot be solved analytically, numerical meth-
ods have been developed to give an effective approximation.
The resulting distribution allows straightforward computation
of the entropy rate of the hidden Markov process.
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