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Abstract—This paper studies the entropy and filtering of study the behavior of filtering error probability and obtained
hidden Markov processes (HMPs) which are observations of tight bounds of the entropy rate in the rare-transition regime,
discrete-time binary homogeneous Markov chains through an ; o \yhene is small. A recent overview of statistical and

arbitrary memoryless channel. A fixed-point functional equation . . . . .
is derived for the stationary distribution of an input symbol information-theoretic aspects of HMPs is presented in [5].

conditioned on all past observations. While the existence of a In absence of an analytical solution, some other works
solution to this equation is guaranteed by martingale theory, its use Monte Carlo simulation [6], sum-product method [7] and
uniqueness follows from contraction mapping property. In order  prefixsets method [8] to numerically compute the entropy rate
]Ep compute this dlstrlbutlon, the fixed-point functl(_)na! equation is by averaging over a long, random sample path of the HMP.
irstly converted to a linear system through quantization and then . D '
solved numerically using quadratic programming. The entropy In addition, some deterministic computation methods based on
or differential entropy rate of the HMP can be computed in two ~ quantized systems are suggested in [9] and [10] independently.
ways: one by exploiting the average entropy of each input symbol In [9], density evolution is applied to a “forward variable” after

conditioned on past observations, and the other by applying a guantization to obtain the stationary distribution of this vari-

relationship between the input-output mutual information and ; ;
the stationary distribution obtained via filtering. Two examples, able. Reference [10] solves a linear system for the stationary

where the numerical method is applied to the binary symmetric distribution of the quantized Markov process to obtain a good
channel (BSC) and additive white Gaussian noise (AWGN) approximation of the entropy rate.
channel, are presented. Unlike many other numerical methods,  This paper studies the entropy rate of HMPs using filtering
this numerical solution is not based on averaging over a long techniques and numerical methods. A fixed-point functional
sample path of the HMP. equation whose solution characterizes the statiorthsyri-
bution of the conditional distribution of X, given the past
observationsY®__ is derived in Section Il. The existence
Let {X,} be a binary Markov chain with symmetricof a solution to this equation is guaranteed by martingale
crossover probability. Let {Y,,} be the observation ofX,,} theory, and Section Il shows that the uniqueness is due to
through an arbitrary memoryless channel. Conditioned&@n a contraction mapping property. Since no explicit analytical
the past, current and future observations, namel; ', Y.  solution to this equation is known, a numerical method is
and Y%, are independent. Without conditioning, howevegeveloped in Section V using quadratic programming, which
the output{Y,,} is not a Markov process. Such a process i§ives a good approximation. In addition, the entropy rate and
called a hidden Markov process (HMP). The entropy (resthe input-output mutual information are computed by two
differential entropy) rate of discrete (resp. continuous) HMRfferent methods. Like the numerical methods in [9] and [10],
is a classical open problem. the scheme in this paper does not require a very long sample
The entropy of HMPs has been studied since as early ggh of the HMP; rather, it is based on a direct computation of
the 1950s. Blackwell obtained an expression of the entropye filtering probability measure. While the numerical method
in terms of a probability measure, which is the distribution gfrovided in [10] quantizes the likelihood process, the scheme

the conditional distribution o\, given the past observationsin this paper quantizes the fixed-point functional equation.
Y°__ [1]. Blackwell's work was followed by several authors

who studied HMPs from the estimation-theoretic (filtering) Il. ENTROPY RATE

viewpoint. In 1965, Wonham [2] used stochastic differential

equation to study the evolution of theosterior probability Let {X,,} be a stationary binary symmetric Markov chain
distribution of the dynamical state given the output perturbeuth alphabett = {+1, -1} and crossover probability <

by Gaussian noise. Recently, Ordentlich and Weissman [8} 1/2). Let {Y,} be the observation o{X,} through a
presented a new approach for bounding the entropy ratestdtionary memoryless channel characterized by two transition
HMP by constructing an alternative Markov process. Therobability distributionsPyx (-|z), = £1, with alphabet
stationary distribution of this Markov process determines the C R.

quality of estimatingX,, using the past observationis”__. Suppose€) is discrete. For every, = 1,2, ..., the entropy
Furthermore, Nairet al. [4] used the techniques in [3] tois related to the input-output mutual information of the channel

I. INTRODUCTION



by Note the above proof is also valid for convergence of
H(Y") =nHY|X)+ I (XY (1) probability distribution of Py~ (+1[Y]") conditioned on
. iy Xo = +1 becausePx,y»(+1[Y]") is a function ofY}" and
Wﬁere]{(ﬁli{) tlﬁ tth.e condltli)hnal ?n;rob% of th?. memorylzs%onditioning only changles the probability measure defined on
channel. Note that in case the alphabets continuous and o-algebra generated by;".

_that1PYt|)X(-| +1) ared(_jens(;t_lffs, W? Thalltreplacep'fhefentroptles Define the likelihood ratio of a binary random varialie
in (1) by corresponding differential entropies. As far as the. any observatior/ as

entropy or differential entropy of the output is concerned, It

suffices to study the mutual information. Ap(U) = Ppy(+1|U) (10)
The input-output mutual information can also be written as Ppy(-1|U)
1 . Then the computation of entropy rate boils down to obtaining
Jim S I(Xy e XY Vo) the distribution of the log-likelihood ratio
1
= H2(€) _nlgrolo EH(X1X7L|Y1 }/n) (2) Li+1 ZIOgAXz(}/Z?i-Ol) . (]_]_)
= Ha(e) — H(X1]Xo, Y1) (3) Note thatL;, i =0, 1, ..., are identically distributed.

In the remainder of this section, we show that the distribu-
tion of L; satisfies a fixed-point functional equation using the
fact thatL; is a function ofL;,; andY;.

where Hy(+) is the binary entropy function.

One can treat (X;]Xo, ¥Y7>) in (3) as the expectation of
the binary entropy ofX; conditioned onXy, Y™, i.e.,
Let {Y,} be the observation of X,,} through a sym-
where the conditional probability’y, |x, v (+1/X0, Y1) metric memoryless channel characterized By, x (y|z) =
is a random number irj0, 1] dependent ofX, and Y. Py y(—y|-z). Let the cumulative distribution function (cdf)

Consequently, in order to compute the entropy or input-outpgit L;;1 conditioned onX; = +1 be denoted by(-), i.e.,
mutual information of the HMP, it suffices to obtain the

distribution of Py, |x, vy (+1|Xo, Y1) F(l) =Pr{Lit1 <I|X; = +1}. (12)
Note that for givenz andy, Theorem 1:The conditional cdfF* satisfies
Py, x0 v,y (X129, Y57) Ja <log 6+(1_€>e£)

— PX1,X07Y1‘Y2°° (Xla $7y|y2oo) (5) e’ + (1 - 6)
T Prywi vy (@, yY50) =e+E{(1—€)F(x—r(W))—eF(—z—r(W))} (13)
Py (X0|Y5°) Py x, (2] X1) Py x (] X0) ©) for everyz € R, whereW ~ Py x(:| + 1), and
> Px v (2/[Y5°) Pxy x, (2]2') Py x (y]2)” Pyix(y +1)
v r(y) =log 5T (14)
istributi 0\ i i oo YIX\Y|— :

The distributions of Py, |y (+1[Y;7,) is well-defined for  proof: The log-likelihood ratiol; defined in (11) accepts a

everyi = 0, £1, ..., on ﬂﬁea—algebra generated by, . natural bound as follows

In fact, the distributions for ali are also identical, which B

is a direct consequence of the following proposition and the |L;| < log (15)

€
because in terms of estimating;_;, providing Y,> is no
better than providingX;.

Pxgjyr (F1[YT") — Pxyyee (+1]Y77) 7) Use Fy|v(ulv) to denote the cdf of random variablé
conditioned onV = v, i.e.

stationarity of the HMP.
Proposition 1: As n — oo,

holds with probability 1.
Proof: For everyn = 1,2,..., define the conditional Fyv(ulv) = Pr{U < u|V = v} (16)

expectationz,, such that The key of the proof is the following evolution, which

Zn =E{1l{xo=11} | YI"} = Px v (+1]Y7").  (8) follows from the Bayes’ rule and definition (11)

Denote byF, the o-algebra generated by;”. Then {F,, : L = log Px,_yvee (H11Y) (17)
n = 1,2,...} is a filtration and{(Z,,,F,) : n = 1,2,...} Py, ye (=11Y,)
is a Doob martingale. Becausg, is uniformly bounded by Py x, (Y2 +1)
1, by Doob’s martingale convergence theorem [15, Theorem = log ——— (18)

13.3 7] PYim‘Xi—l(}/;oo| - 1)
R et (Yi)+Lita +1
E { 1{Xg:+1} ’ Yln} — E { 1{X0:+1} } Yloo} (9) = log er(}/'i)+L77+1 T e ) (19)

with probability 1. B wherea =log[(1 —¢€)/e€].




Define I1l. UNIQUENESS OFSOLUTION TO THE FIXED-POINT

he(l) = log L)el_e (20) FUNCTIONAL EQUATION
(1—¢€) — €€
which is a monotonically increasing function bk (—a, «).
Then
Lit1 = he(L;) —r(Y3) (21)

An explicit solution to the fixed-point functional equations

Clearly, by changing the variable, (13) and (30) is not available, despite the following result.

Fr v, x.(ly, ) = Fr.. v, x, (he(l) — , 22 n ! . . .
L, x: Uy @) Loy X (he(l) = r(@)ly, ) - (22) Proposition 2: The fixed-point functional equation (13) ad-

= Fripixi(he(l) = r(y)l2), (23) " mits no more than one solution as a cdf.
and thus Proof: First, rewrite (13) as (28) with the variable
Frx,(ljz) = / Fr.1v,.x, (Uy, z) dPy | x (y|z) (24) replaced byu. Let S denote the set of cdfs whose corre-
Y sponding probability measure has support within in the region
— [ F (B (D) — dp ' [—log(1—¢€)/e,log(1 —€)/¢], which is denoted a&. For any
/ Lipalxi (hell) = r(y))|2)dPy x (yl) two cdfs Fy and F, in S, the L' distanced(F}, F») is given

(25) by the following

Also, becausd; is a function ofY;>, one can get
g d(F1, Fy) = / |Fy(u) — Fy(u)| du. (31)
FLz‘\Xi—l(”x) = (1 - E)FLq\X1(1|x) + eFLiIX«L (l| - Ll?) (26) ®

Since L; are identically distributed even conditioned on Define the operatow over the setS as
Xi_1 = +1, one can defineg’(l) = F,x,_, (]| + 1), € R,

_ 1—e.
Furthermore, note the following fact by symmetry, (W F) () = %(u) Z :Q.log P 32)
Frox (lz) =1—Fpx,_, (=l|—2).  (27) 1, u > log 1=,

Substituting from (25) into (26) and letting = +1 yields where
G(u) = E{(1 = OF (he(u) — r(W))

F(l) = E{(1 = e F (he(l) —r(W)) (33)
te(l— F(=he(l) — r(W)))} . (28) +e(U= F(=he(u) —r(W)) }-
The inverse ofh (1) is For simplicity, denotef; (x) — f2(x) as{f1 — f2}(x) where
e+ (1—e)e? f1 and f, are two functions. The key to the proof is the fact
qe(z) =log —————~ (29) that ¥ is a contraction mapping under thé distance.
ee” 4+ (1 —¢)
for z € R. For any two cdfsF, F» € S,
l Equ(at)ion (28) becomes (13) by letting= h.(!) and hence d(VF,, UF)
= (e\T).
| - [ [E{a-atR - Rt~ rw))
B. Non-symmetric Channels Q
Consider a channel characterized Byx(-| + 1) and + e{F2 = Fu}(—he(u) — T(W))}‘du (34)
Py x (-] — 1) which are in general not symmetric. L&t (-)
(resp.F_(+)) denote the cdf of; conditioned onX;_; = +1 < /Q E{‘(l — O{F1 = Fa}(he(u) —r(W))

(resp.X;_1 = —1).
Theorem 2:The conditional cdfsF’, and F_ satisfy

Pea@)] _[1=e ¢ [[E{F@=1O)] (g0 < [ (- 9ltR - B} hw) ~ r(W))|
F_(ge(z)) e l1—¢f |[E{F (z—r(V))} e
for everyz € R, whereg,(z) is given in (29),U ~ Py x|+ el{F = Fi}(—he(u) - T(Wm}du (36)
1), V.~ Pyx(| - 1), andU, V are independent. _E / L OF — P (B () —
The proof is straightforward using the same technique - { 0 {( OEL = o} (he(u) = r(W))]
developed in the proof of Theorem 1. 4 6|{F1 — B} (—he(u) — T(W))”du} 37)
Note that in [3] and [10], Ordentlich and Weissman studied
the filtering process from a different perspective using an altevhere (35) and (36) follow from Jenson’s inequality, and the
native Markov process. Formulas (13) and (30) in the speci@der of integration and expectation is changed in (37) using
case of discrete memoryless channels were also establishdadnelli’'s theorem [11, p. 183].

el Py — Fy Y (—he(u) — r(W))(}du (35)



Note thatg.(-) defined in (29) is the inverse &£ (-). For the Also note that for giver: andy

first term in the integrand of (37), one can obtain the following

/Q |y (he(u) — (W) — Fy(he(u) — r(W))|du
:/R|F1(t)fFQ(t)|qé(t+7‘(W))dt

< (1—26)/R|F1(t)—F2(t)|dt

with the inequality justified by the fact thaf(¢) < 1 — 2¢ for
all t e R.

(38)

(39)

PL2‘X0,Y1 (”xvy)
Ez’e{ﬂ:l} PL27X07X1,Y1 (l7 Zz, xla y)

- Pxyv, (2, y) (43)
~ Pxyxy vy (, Jrl,y)dFd—l(l)
B Px,y, (2,9)
Py, x, v (z, —1,y) =250 (46)
Pxy v, (z,y)

Therefore, in order to compute the entropy, it suffices to

Similarly, one can upper bound the second term in (37plve the fixed-point functional equation (13) (or (30)).

which, together with (39), leads to

d(\I/Fl, \I/FQ) S (1 - 26)d(F1, FQ) (40)

B. Computation Via an Information-Estimation Formula
One can also compute the input-output mutual information

with 0 < 1 — 2¢ < 1. Therefore, U is a contraction mapping. of HMPs using a fundamental information—estimation rela-

Note that the solution to (13) is a fixed point of the operatcs-
U, Suppose there exist two cdf§" and Fi in S which satisfy
(13), by the contraction mapping property ¥f one can get

the following inequality
d(Fy,Fy) =d(VF},UFy) < (1 —2¢)d(Fy,Fy). (41)

The inequality (41) implies thad(F;, F5) = 0. That is, F;'
and F; must be the same cdf.

lim ——
Note that the result in Proposition 2 also applies to (30):— 2n dé
which can be shown using the same contraction mappin

argument.

IV. COMPUTATION OF ENTROPY RATE AND MUTUAL
INFORMATION

In this section, we propose two methods for computing tf dA~ (V0
input-output mutual information and hence the entropy rate ap x; (Yi5)

HMPs.

A. Direct Method

Recall (1) and (3), the direct method only requires
Here,

computing the conditional entropyd (X;|Xo, Y7>).

nship. In the following the computation is illustrated using
the special case of binary symmetric channel (BSC). The
following is a variant of a result due to Palomar and Verd
[12].

Proposition 3 ( [12]): Let {X,,} and {Y,,} be the respec-
tive input and output of a BSC with crossover probability
d € (0,1). For every input distributiorPxn,

1 A—1, A+e?
I(X" ;Y™ )=E 1 _
(X0 ¥20) {A+1Og A+eﬁ}
(47)

w%ereA takes the limiting distribution of the likelihood ratio
Ax, (V™) with Y™ = (YL ¥7,) asn > 2i — .
Note that one can decompode, (V") as follows,

log Ax,(Y"") =log Ax, (Y'7') +log Ax, (Y,) . (48)

Thus, the limit distribution ofAx, (Y""") asn — oo is easy
@ compute because the respective distribution gf (Y*})
can be solved from the fixed-point functional
equations by Theorem 1 or 2.

Since the right hand side of (47) can be evaluated for every
0 < § < 1/2, the mutual information for any givefi € (0, 1)
can be obtained as an integral, also using the fact that the
mutual information is equal to 0 with = 1/2.

V. NUMERICAL METHODS
Since no explicit analytic solution to the fixed-point func-

PX1|X0,Y1°° (+1|X0, Yloo) as

Px,1xo, v (+1] X0, Y1)
Py (F1Y5°) Py x, (Xo| 4+ 1) Pyyx (Y1] + 1)

= 42
Zi Py, jype (#'|Y5?) Pxy x, (Xol2') Py x (Yi]2') (42)
z/==+1
— (14 exp[—aXo—r(Y1) — Lo]) " . (43)
Therefore, in view of (4), one can write
H(X1| X0, Y1)
(44)

N E{H2 <1+exp[—an_7"(Y1) _L2}> ’ XO?Yl}.

compute it in this section.

Note thatL; accepts a natural bound (15), one can sample
F(-) arbitrarily finely to obtain a good approximation. Here
we give some examples to illustrate how this quantization-
based method can be applied to solving fixed-point func-
tional equations arising in this paper. One may also find that
reference [10], as well, utilizes a linearized system method
to approximate the stationary distribution of an alternative
Markov process. The method in this paper differs from the
one in [10] by discretizing the fixed-point functional equation
while the one in [10] discretizing the transition matrix of the
alternative Markov process.



A. Example 1: Binary Symmetric Channel - - - -

For a BSC with crossover probability € (0,1/2), the
fixed-point equation can be written as:

Fge(x)) = (1 = e)(1 = 0)F(x — ) + (1 — €)F (x + ) - L - :

+e(1-0)(1 - F(—z—pf))
+e5(1— F(—z+3)) (49) Fig. 1. Structure of MatrixP Fig. 2. Structure of Matrixi

for everyz € R, where =log(1/6 — 1).

In fact, the log-likelihood ratiol; accepts a bound which qguadratic programming with linear convex constraints.

is tighter than (15). Let the supremum bf be z*, which is i (K —P)F +d|>? (53)

given in [3], and derived here for completeness. Sipce) is F .

an increasing contraction mapping:ofor everye, z* satisfies -t Fi =0, L <i< M

the following boundary condition F,—F,_1 >0, M +1<i< M+ M,+1;
Qe($*+6):$* (50) F; =1, M+ My+1<i< M+ M+ My,

which gives whereF; denotes théth element ofF’, and M7, M> and M35

denote the number of samples in the interjals* — 3, —x*),
[} _ =B 2 _ -—B)2 e * * * .
v = log [e (1-e )+\/e (1—eP) +e bl (51) [—z*, 2*] and (z*, * + (] respectively.

2 4 Since the feasible region of the quadratic programming
is a compact convex set, the optimal solution exists. The
Thus, one can apply a quantizer willf levels to[—z* — uniqueness of solution requires a detailed study on the matrix

3,2* + f], and denote the resulted sample sequence”c.by(K -P), whigh in general is diﬁicglt. Fprtunatgly, since t.he
Denote theM-sample sequence d(-) evaluated ori: by an cdf of L; cpnd|t|oned_onXZ-,1 = +1is unique, this quadrapc
M x 1 vector F. Since the right hand side of (49) is a lineaPfogramming does give a unique solution when the maximum
combination of shifted versions of(-), one can multiply S@MPpling interval length is small.
F by a matrix K together with the help of an auxiliary There are many methods for solving the quadratic program-
constant vectord to obtain the discretized expression. Th&ning problem (53), among which we use the active set method
discretization of left hand side of (49) involves quantizingl3]. Although the number of iterations depends on the initial
the logarithm, which is a contraction mapping frofn to test value, this method can give a quadratic convergence rate
(—a, ). One can simply quantize the valuesfof.) evaluated [14], which makes the entire computation fast.
at ¢.(%;),: = 1,---,M, where Z; is the ith element of  Once the cdff’(-) is obtained, the entropy and input-output
Z, to the nearest sample point if. This can be done by mutual information can be computed using either the direct
pre-multiplying F' by a scrambling matrixP. Thus, one can method (see Section IV-A) or an information-estimation rela-
convert the non-linear fixed-point functional equation (49) ttionship (see Section IV-B). If the latter method is employed,
the following linear system one can utilize FFT and IFFT to compute the distribution of
the left hand side of (48) conditioned on eith& = —1 or
PF=d+KF. (52) X; = +1, because the pdf of the sum of two independent
random variables is the convolution of the pdf of each of
When a uniform quantizer is used, the matri®=andK the two random variables. As long as the distributions of
have the structure depicted in Fig. 1 and Fig. 2 respectivelys A conditioned respectively ok; = —1 and X; = +1

In Fig. 1, the elements on the curve are all 1's and the rest&f obtained, one can average them with equal probability to
the elements in the matrix are 0's. In Fig. 2, all elements @btain the distribution ofog A.

line (1) take the valué¢l —€)(1 — ¢), all elements on line (2)
take the valug1 — €)d, on line (3) take the value-e(1 — ¢)
and on line (4) take the valueed. The rest of the elements
in the matrix are 0’s.

Fig. 3 gives the numerical results for BSC. The entropy rate
of the output process is plotted as a functionecdnd 6. A
uniform quantizer is used for computation.

There are many different ways for numerically solvin
the linear system (52), such as Gaussian elimination and
QR factorization. Some are quite efficient if we utilize the
sparsity of the matrice® and K. For ease of imposing the
monotonicity of the cdff’, we choose to solve the following Y=\1X+N (54)

Example 2: AWGN Channel

For AWGN channel described by the following model
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Fig. 3. Entropy Rate of BSC with respect to the transition probability of the[3]
Markov chaine and that of the BS@.

(4]
where N ~ N (0, 1), the conditional cdfF" satisfies

F(ge(z)) =e+ E{(1 —€)F (z —2W) — eF (—z — 2IW)}
(59)

(5]
6]

for everyz e R, W ~ N(\/7,1).

To linearize (55), one needs to also quantize the support &f
distribution of W. Because it is a standard Gaussian distribu-
tion, one can take samples on a finite interval, ¢-¢5,5], [8]
and get a good approximation. In this case, the right hand
side in linearized (55) will be expressed as the superpositigg
of shifted versions of’(-) due to different quantization levels
of W. The matrixK in (52) is dense in this case.

Numerical results for AWGN channel with a uniform quan-
tizer is illustrated in Fig. 4. The differential entropy rate i$l1]
plotted as a function of the crossover probabiktyand the
signal-to-noise ratioy.
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Fig. 4. Differential Entropy Rate of AWGN Channel w.ri&t.and~.

VI. CONCLUSION

This paper derives fixed-point functional equations to char-
acterize the stationary distribution of an input symbol from
a binary symmetric Markov chain conditioned on the past
observations under general channel models. The existence and

uniqueness of the solution to such a fixed-point functional
equation are justified using the martingale theory and a con-
traction mapping property respectively. Although in general
these equations cannot be solved analytically, numerical meth-

have been developed to give an effective approximation.
resulting distribution allows straightforward computation

of the entropy rate of the hidden Markov process.
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