
Experience Report:
OCaml for an Industrial-Strength Static Analysis Framework

Pascal Cuoq ∗ Julien Signoles
CEA LIST, Software Reliability Labs,

Boite 65, 91191 Gif-sur-Yvette Cedex, France
First.Last@cea.fr

with Patrick Baudin, Richard Bonichon,
Géraud Canet, Loı̈c Correnson,

Benjamin Monate, Virgile Prevosto,
Armand Puccetti

Abstract
This experience report describes the choice of OCaml as the imple-
mentation language for Frama-C, a framework for the static anal-
ysis of C programs. OCaml became the implementation language
for Frama-C because it is expressive. Most of the reasons listed in
the remaining of this article are secondary reasons, features which
are not specific to OCaml (modularity, availability of a C parser,
control over the use of resources. . .) but could have prevented the
use of OCaml for this project if they had been missing.

Categories and Subject Descriptors D1.1 [Programming tech-
niques]: Applicative (Functional) Programming

General Terms Design, Languages, Verification

1. Introduction
Frama-C is a framework that allows static analyzers, implemented
as plug-ins, to collaborate towards the study of a C program. Al-
though it is distributed as Open Source, Frama-C is very much an
industrial project, both in the size it has already reached and in its
intended use for the certification, quality assurance, and reverse-
engineering of industrial code. Frama-C is written in OCaml, and
this article reports on the most noticeable consequences of this
choice on the human (section 2) and technical (section 3) levels,
as well as providing an overview of the implementation of Frama-
C (section 4).

2. Human Context
Frama-C is developed collaboratively between the ProVal team (a
joint laboratory of INRIA Saclay Île-de-France and LRI) and CEA
LIST. This article describes our (CEA LIST) own analysis of this
collaborative development. The Open Source nature of the software
and other partnerships involving CEA LIST mean that Frama-C is
in fact developed at three different sites, by around ten full-time
programmers, with infrequent inter-site face-to-face meetings.

∗ This work has been supported by the french RNTL project CAT
ANR05RNTL00301

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’09, August 31–September 2, 2009, Edinburgh, Scotland, UK.
Copyright c© 2009 ACM 978-1-60558-332-7/09/08. . . $5.00

2.1 Recruiting OCaml programmers
It is typical for an article of this nature to include a few words to the
effect that it is harder to find people who can program in functional
language Y (Minsky 2007; Nanavati 2008) than in C++, sometimes
nuanced by more words pointing out that this is balanced by the
higher quality of Y candidates. The first proposition did not apply
for us in the case of Frama-C and OCaml. CEA LIST is an applied
research laboratory that recruits almost exclusively PhDs. When the
choice is restricted to candidates with a PhD in the field of formal
methods, it is not harder to find a candidate with the motivation to
program in OCaml than in C++.

2.2 Objectives of the Frama-C project
Although it is developed by research institutes, Frama-C tries to
fulfill focused, specific needs expressed by industrial partners. It
aims past the R&D departments and into the hands of the engi-
neers who develop embedded code in any industry with criticality
issues1. Frama-C is structured as a kernel to which different anal-
ysis plug-ins are connected. It is composed as a whole of 100 to
200 thousands of lines of OCaml2. All this OCaml code provides
a wide range of functionalities, but the plug-ins do not just sit side
by side. It is more accurate to think of them as built on top of each
other. To give an example, a value analysis plug-in computes su-
persets of possible values for the variables of the program (Canet
et al. 2009), indexed by statement of the original program. Unions,
structs, arrays and casts thereof are handled with the precision nec-
essary for embedded code (Cuoq 2008). These values, especially
the values of pointers and expressions used as indices in arrays, are
used by another plug-in to compute synthetic functional dependen-
cies between the inputs and the outputs of each analyzed function.
These synthetic dependencies are in turn used by a slicer plug-in
which produces simplified, compilable C programs that are guar-
anteed to be equivalent to the original for the slicing criterion. And
the building blocks of this slicer are used by one of Frama-C’s most
sophisticated plug-ins to date, a security-aware slicer that preserves
the confidentiality of information: the (functional) confidentiality is
guaranteed to be exactly the same in the sliced program as in the
original program (Monate and Signoles 2008). This means that it
is safe to study functional confidentiality on the (smaller) sliced
program, for instance for a security audit of the source code. This
would not be possible with a traditional slicer, because a traditional

1 or even without criticality issues, but so far the industrial interest has come
from critical embedded systems
2 The command wc ‘find . -name *.ml -o -name *.mli‘ re-
ports 220000 lines as of this writing, which include comments, the CIL
and ocamlgraph libraries, and some testing scripts

281

slicer might remove information leaks — in particular, a malicious
programmer could insert information leaks that he knows the tradi-
tional slicer used for the audit will remove.

Figure 1. Frama-C’s value analysis displaying results in the GUI

2.3 History of Frama-C
At the Software Reliability Labs, Frama-C was initially seen as a
major evolution to Caveat (Baudin et al. 2002; Randimbivololona
et al. 1999; Delmas et al. 2008), a software verification tool for C
programs based on Hoare logic. Caveat is used by Airbus for part
of the verification of part of the software embedded in the A380.
As the DO-178B standard mandates, Caveat has been qualified by
Airbus as a verification tool to be used for the certification of this
particular software. Caveat is supported by the Software Reliability
Labs but new ideas are now developed within Frama-C.

OCaml was pushed as the implementation language to choose
for Frama-C by the new hires, but the actual reason it was ac-
cepted is that OCaml was not completely unheard of to the senior
researchers there. Indeed, OCaml was already used in the (predom-
inantly C++) Caveat project as the scripting language that allows
an interactive validation process to be re-played in batch mode.

3. Technical context
3.1 Expressivity
OCaml’s expressivity was crucial in the adoption phase of the lan-
guage. An initial one-person internal prototype was able to produce
results that convinced management to extend the experiment to two
programmers. Eventually, this prototype was able to persuade in-
dustrial users to get involved in a national project.

To be precise, industrial partners agreed to be part of the project
because of their previous experiences with the providers of static
analyzers in the project. Some of the tools that they were familiar
with were written in OCaml (Caduceus by the ProVal team), and
some of them weren’t (Caveat). The time it takes to build these
relationships should not be underestimated, and we are not saying
that the choice of any programming language can shorten it.

However, the progress made by Frama-C after the project had
started, which can at least partly be attributed to OCaml, convinced
the industrial participants to become involved beyond expectations.
At each phase of the bootstrap process, OCaml’s expressivity was
important in quickly writing the proof-of-concept that took the
project to the next stage.

3.2 Control over the use of resources
One of Frama-C’s first plug-ins was a value analysis based on ab-
stract interpretation. This plug-in computes supersets of possible
values for expressions of the program. Among other things, these
over-approximated sets are useful to exclude the possibility of a
run-time error. In contrast with the heuristic techniques used in
other static analysis tools, which may be very efficient but solve
a different problem, shortcuts do not work when the question is
to correctly — that is, without false negatives — find all possible
run-time errors in large embedded C programs. The analysis has
to start from the entry point of the analyzed program and unroll
function calls (and often loops). In addition, the modular nature of
Frama-C and the interface that the value analysis aimed at provid-
ing to other plug-ins meant that abstract states had to be memo-
rized at each statement, which dictated the choice of persistent data
structures, with sharing between identical sub-parts of states (Cuoq
and Doligez 2008). This meant at the very least that a garbage-
collected language had to be used. While there are popular imper-
ative languages that are garbage-collected nowadays, and some of
these languages have huge libraries of data structures ready to use,
persistent data structures are often under-represented in these li-
braries, and are slightly annoying to write in these languages. For
writing a static analyzer, one is not worse off with OCaml and a few
select libraries (Conchon et al. 2008; Filliâtre and Conchon 2006)
than with any of Python, the .NET framework or the Java platform,
although it is by no means impossible to write static analyzers in
any of these.

By contrast, in the development of Caveat in C++, there were
explicit deallocation functions, and sanity checks that warned at
the end of a session if deallocation had been forgotten for some
nodes. Programming time that could have been spent usefully was
spent writing the calls to the deallocation primitives and the source
code’s readability was diminished, but this is neglectable compared
to the time that had to be spent debugging (the warnings told the
developper that the deallocation had been forgotten, not where
it should have been done). The solution to a subtle deallocation
problem was often to make copies of existing nodes (although it is
not meaningful to compare the memory consumption of Caveat to
that of Frama-C’s value analysis, because they work on different
principles).

To conclude, in Frama-C, garbage collection paradoxically en-
ables a tighter control of memory usage than explicit deallocation
because it makes sharing possible in practice. OCaml is a strict lan-
guage. We do not know what the influence of lazy evaluation would
be on memory use.

3.3 Existence of CIL

CIL (Necula et al. 2002) is an OCaml library that provides a parser
and Abstract Syntax Tree (AST)-level linker for C code. CIL is
well documented and provides ready-made generic analyses that
are very useful to get a prototypal analyzer started. Unlike the
earlier mentioned data structures that are nice to find in OCaml
but could be written quickly if they were missing, having to write
a C parser when one’s goal is to write a static analyzer would be a
major time-sink. It would have been a significant counter-argument
to the choice of OCaml if such a library had not existed. We were
probably a little bit lucky, and OCaml is certainly at a disadvantage
with respect to other languages from this point of view. We weren’t
perhaps lucky to find a C parser so much as to be working in a
field that is also of interest to academia. So many researchers in
software engineering use OCaml for their experiments that despite
the amount of work involved, such a parser could be expected to
get written someday. On the other hand, finding a library, or even
bindings to an existing library, for an OCaml project in a field that
does not interest students and researchers could be a problem.

282

This drawback (less developers implies less available libraries)
is mitigated by higher code re-usability when you do find code
to re-use, the existence of the Caml Hump3 and the fact that the
grapevine works well between OCaml developers. OCaml does not
have anything that begins to compare for instance with CPAN, the
Comprehensive Perl Archive Network, but it does have a healthy
community.

3.4 Portability
It would have been an annoyance if the development platform for
Frama-C had allowed it to be used only on Unix variants, because
many potential users only have access to Windows stations. Unix
being the system used by the majority of the researchers at the
Software Reliability Labs, the switch to a Windows-only platform
was not considered. Motivated users — and at this time actually
deploying formal methods requires motivation anyway — have
found their way past this limitation for previous projects developed
at the Labs.

From this point of view, the choice of OCaml (and later of GTK+
as the toolkit for the graphical interface, through the lablgtk bind-
ings) was an excellent compromise, with Unix clearly being the
primary platform of the compiler, and Win32 robustly supported
through either Cygwin or Visual C++. Compiling a large OCaml
project on Windows+Cygwin is slow. This is probably caused one
way or the other by the use of Unix compilation idioms (config-
uration script, makefile) on an OS where things are usually done
differently, and is not a limitation in this context.

It should be noted that many OCaml developments are refer-
enced in the source distribution GODI, with dependency lists and
automated compilation scripts. All of those Frama-C dependencies
that are written in OCaml are referenced in GODI, and Frama-C it-
self is. Some Frama-C users who have no interest in OCaml outside
of Frama-C have found that this was the most convenient installa-
tion path for them.

Frama-C has been tested under Windows, Mac OS X, Solaris
(32-bit), OpenBSD and Linux. Binaries are also distributed for
some of these platforms.

64-bit readiness A 64-bit address space is available to OCaml
programs for many 64-bit platforms. Frama-C compiles in both
32- and 64-bit mode, and the resulting versions are functionally
identical. This was not a big effort, as OCaml encourages to write
high-level code, for instance by providing bignums. For some 64-
bit-aware platforms (Mac OS X), it is a simple configure option
to choose between 32-bit or 64-bit pointers at the time of compiling
OCaml. For others, it is troublesome to go against the default size
(Linux). With Linux, getting an OCaml compiler with a word size
different from the distribution default is akin to building a cross-
compiler. However, efforts are under way in the OCaml community
to improve support for cross-compilation, including from Linux to
Win32. We are looking forward to the maturation of such initia-
tives.

Availability of a graphical toolkit Frama-C uses the GTK+ toolkit
for its graphical user interface. This section does not discuss the
merits or demerits of this toolkit with respect to others. The ques-
tion it tries to answer is “If I choose OCaml for a software project,
will I find one satisfactory toolkit to design the user interface
with?”. The choice of GTK+ for Frama-C was somewhat arbitrary,
but it allows to give a positive answer to the question above, without
prejudice to other available toolkits.

Our experience is that for some Unix variants (Solaris, Mac
OS X, very old Linux distributions), it is necessary to obtain and
compile the missing GTK+ libraries manually, or semi-manually

3 The Caml Hump an is informal central repository for OCaml libraries

with the help of source distribution systems such as GARNOME or
MacPorts. In this case, retrieving and installing the dependencies of
the gtksourceview1 library (a GTK+ widget for displaying source
code) is a pain. This is not directly an OCaml problem, but another
development platform could have made it possible to use the mod-
ern gtksourceview2 (which solves the dependencies problem) or
provided more toolkits to choose from initially (to the best of our
knowledge, OCaml only offers Tk and GTK+ at this time). Now
that gtksourceview2 has become stable, there is talk on the lablgtk
development list about including it in lablgtk. This is anyway a very
minor quibble. It should be kept in mind for comparison that Java
or .NET/Mono do not come pre-installed on every platform either.
Again, we have no reason to regret the choices of OCaml and GTK+
from the standpoint of portability.

OCaml as a scripting language It should be noted that while this
is not its strongest point, OCaml is an acceptable scripting lan-
guage. In other words, when OCaml is chosen as the main language
for a new project, the project may be saved the introduction of addi-
tional dependencies towards various dedicated scripting languages
down the road. For instance, the HTML pages of the Frama-C web
site are processed with the yamlpp preprocessor4, which is written
in OCaml. For comparison, in its 15 years of development, Caveat
had at one point accumulated dependencies towards Perl, Python,
Bash and Zsh (in addition to C++, and in addition to OCaml, used
for journalizing and re-playing). Some of these dependencies have
since be removed, by replacing some tools with OCaml equivalents.
Whatever the main language, discipline is obviously the foremost
factor in avoiding “dependency creep”.

3.5 Module system
OCaml’s module system (Leroy 1996) has direct advantages: it
creates separate namespaces and, when the modules are in separate
files and interfaces have been defined, fully type-checked separate
compilation. It is easy to underestimate the importance of these
features in the management of a big project because they make the
compiler transparent, but when they are missing, their absence is
unpleasantly noticeable. We discuss these, and the (theoretically
more interesting) functor system per se.

Separate compilation With OCaml, in bytecode, separate com-
pilation has the same meaning as everywhere: compilation is par-
allelizable and only modified files need to be recompiled, with a
quick final link phase. With native compilation, all the ancestors of
the modified modules in the dependency graph must be recompiled,
and the compilation of two files with a parenthood relationship
can not be parallelized. Depending on the structure of an OCaml
project, recompilation after an incremental change in a low-level
module may sometimes feel longish, but in truth, it is much faster
to recompile Frama-C with ocamlopt than to recompile Caveat
with g++.

The existence of two OCaml compilers, one with blazingly fast
compilation in general, the other with acceptable recompilation
time and producing reasonably fast code, allows very short modify-
recompile-test cycles. Again, it is easy to take short recompilation
times for granted but with other languages, when a software project
grows in size, this can sometimes be lost, and sorely missed.

The OCaml compiler tries very hard not to get in the way
between a programmer and his program, and it does not force the
programmer to write interfaces. However, if the interface m.mli
is missing for module M, the compiled interface is generated from
m.ml. This means that any change to m.ml changes the compiled
interface and forces the recompilation of every module that uses M,
even in bytecode. In a large project, modules should always have

4 http://www.lri.fr/~filliatr/yamlpp.en.html

283

interfaces, if only for the sake of separate compilation. OCaml has
an option to generate automatically the interface m.mli that exports
everything from M.

Separate namespaces for compilation units Orthogonally to sep-
arate compilation, but as importantly for big projects, OCaml’s
module system provides separate namespaces. Better yet, the com-
piler option -pack allows to group several compilation units into
a namespace. As a consequence, compilation units that have been
put into different packs may safely use the same name for a type,
variable or module. For instance the types tree in files both called
m.ml in packs lib1 and lib2 are seen as Lib1.M.tree and
Lib2.M.tree.

This feature is very useful for libraries because libraries may use
very common filenames (util.ml) with the guarantee that there
will not be a clash at link-time for users of this library (on condition
that the pack name itself is unique).

In Frama-C, plug-ins are independent from each other: each
plug-in only interfaces with the Frama-C kernel, and does not see
the implementation details of other plug-ins. In order to implement
this separation, the Frama-C system automatically packs each plug-
in. Thus, two different plug-ins may use files with identical names
and still be linked together within Frama-C.

Interfaces and functors The possibility to write functors (mod-
ules that are parameterized by other modules or functors), intro-
duced before objects (at the time of Caml Special Light), has
proved a workable, and completely statically checked, alternative
to object-oriented programming. We use OCaml objects only when
interfacing with existing OCaml code that uses objects (CIL and
lablgtk), and use functors for the rest.

Some very structural idioms seem destined to be expressed
with objects (or, for that matter, class types): equality, pretty-
printing, hashconsing or marshaling functions5. Most of our data
structure are complicated enough that automatically produced
pretty-printers or equality functions would not fit the bill. Con-
sequently, it is in our case neither more nor less tedious to write
modules (and interfaces) that sport, in addition to a type t, func-
tions such as pretty: Format.formatter -> t -> unit and
equal: t -> t -> bool, and for unmarshaling values of a hash-
consed type, rehash: t -> t. But, speaking of equality, it should
be noted on the other hand that OCaml’s polymorphic comparison
functions (including =, >= and even ==) are dangerous pitfalls. The
type-checker does not complain when they are applied wrongly
instead of, for instance, equal above.

In OCaml, the module system allows to encapsulate the defini-
tions of data structures, and in particular to give a purely functional
interface to a sophisticated data structure that uses mutable values
internally for optimization. With this compromise, the amount of
stateful information that the programmer has to keep in mind is
limited by the module boundaries, and the implementation’s algo-
rithmic complexity may be better than that of all known pure im-
plementations. Some in the OCaml community call such an impure
module “persistent” (Conchon and Filliâtre 2007). In fact, some
positive reports on the industrial use of Haskell (Nanavati 2008)
resonate deeply with our own programming experience, except that
we attribute to OCaml’s module system the advantages attributed
there to Haskell’s purity.

3.6 Labels and optional arguments
OCaml allows to use labels for function arguments. This feature
does not make anything possible that was not already, but in prac-
tice, labels provide a concise way to remove the risk of confusion

5 In the presence of hashconsing, not only do you have to write your own
unmarshaling functions, but they are extremely tricky to get right

when a function takes several arguments of the same type with no
obvious normal order between them. The only language that we
know of with a feature vaguely similar to OCaml’s labels is Objec-
tive C’s infix notation for function calls.

Syntax begets style. The “OCaml style” is to write pure func-
tions unless an exception needs to be made because the syntax re-
wards the use of immutable definitions, as seen in the following:
let x = 2 in ... x ...
let x = ref 2 in ... !x ...
We argue that using labels rewards consistent naming schemes in a
similar fashion. When it is common for an argument to be passed
repeatedly as-is from caller to callee without any computations ac-
tually happening to it (and in a persistent setting as much of Frama-
C is, this happens with a lot of arguments), the labels syntax re-
wards the consistent choice of a unique label and eponymous vari-
able name for this argument by a very concise syntax. In this ex-
ample, the function f is being defined and calls functions g and
eval.

let f ~mode ~env x y =
let context = ... in
... g ~mode ~context (x+y) ...
... eval ~mode ~context ~env ...

If the programmer deviates from this style by using different la-
bel names or variable names for mode, context, or env, he re-
ceives a gentle slap on the wrist in the form of the awkward
~context:computation_context syntax. This changes the way
of reading labels-enabled OCaml programs, too. The reader can
put more trust in the names of variables, without having to look for
context all the time. The level of obtrusiveness of the label syntax
is exactly the same as with the definition of mutable values, and it
is exactly right, too. Good style is encouraged but the system can
be circumvented when it needs to.

Optional arguments (a syntax for giving a labeled argument a
default value if it is omitted) are convenient when the consequences
of the omission (and subsequent use of the default value) are visible
and traceable (for instance, to provide a toolkit interface that is both
powerful and beginner-friendly). It is in general a bad idea to use an
optional argument to add a new mode to an existing function, both
because of all the existing calls to this function — that the compiler
would be glad to help the programmer inspect if s/he did not use an
optional argument — and because of all the calls to be written in
the future where the optional argument will be omitted by accident.

4. Development of Frama-C
There are a number of features in Frama-C’s architecture that any
Frama-C developer must be aware of. The goal of this section is not
to provide a complete list — which can be found in the Frama-C
plug-in development guide (Signoles 2008) — but to give a mildly
technical overview of each interesting one, with reference to the
OCaml feature(s) that make its implementation possible.

4.1 Software architecture
The software architecture of Frama-C is plug-in-oriented. This ar-
chitecture allows fine-grained collaboration of analysis techniques
(as opposed to the large-grain collaboration that happens when one
technique is used in a first pass and another in a second pass). As
a consequence, mutual recursion between plug-ins must be possi-
ble: a plug-in A must be able to use a plug-in B that uses A. A
Frama-C plug-in is a packed compilation unit (see Section 3.5) but,
unfortunately, OCaml does not support mutually-recursive compi-
lation units. This problem is circumvented pragmatically by using
references to functions placed in a module that all plug-ins are al-
lowed to depend on.

284

This “central directory” module is called db.ml and a snippet
of it may look like:

/* db.ml: kernel database of plug-in stubs */
module Plugin1: sig val run: (unit->unit) ref end
module Plugin2: sig ... end

During its initialization, a plug-in registers each of its exported
functions in the appropriate stub in Db — another OCaml feature is
that each compilation unit can have its own initialization effects.

/* plugin1_register.ml */
let run () = ... (* the analysis goes here *)

(* registration of [run] in the kernel *)
let () = Db.Plugin1.run := run

Thought this solution is the most common way to break mu-
tual recursion between compilation units, it has trade-offs. Firstly,
polymorphic functions may not be registered this way. This is not
an issue here: each plug-in is a static analyzer, and none of the
analyzers we have written so far wanted to provide polymorphic
functions. Secondly, the types of the registered functions have to
be known by the Frama-C kernel. Here again, that is not a big issue
in our context, especially because Frama-C encourages the use of
ACSL (Baudin et al. 2008), a common specification language, as
the lingua franca to transmit knowledge between plug-ins. Finally,
the most significant trade-off with this solution is that any plug-in
that wishes to provide an interface to other plug-ins (as opposed to
interacting with the user only) needs to modify some well-identified
parts of the Frama-C kernel. This has not been a problem so far
because, for now, plug-ins written outside Frama-C’s development
team have all been dedicated to answering a specific problem, as
opposed to providing computations to help other plug-ins.

4.2 Dynamic loading of plug-ins
OCaml has allowed dynamic linking of bytecode compilation units
(through module Dynlink) for a long time. In OCaml 3.11, dy-
namic linking of native code became available for a large number
of target architectures.

Frama-C uses dynamic linking where available in order to pro-
vide dynamic loading of plug-ins. This is an alternative way to plug
analyzers into the Frama-C kernel. When dynamic linking is used
for the plugging, the plug-in’s functions are registered in a global
table in the kernel at load-time. Because all functions do not have
the same ML type, phantom types (Rhiger 2003) are used in or-
der to dynamically ensure the program’s safety (see Section 4.6).
Dynamic linking solves two out of three issues of static linking: it
ceases to be necessary for the kernel to be aware of the types of all
plug-ins’ exported functions, and it becomes more convenient to
distribute a plug-in separately from Frama-C (in particular a plug-
in no longer needs to patch the kernel).

4.3 Impure functional programming
Most analyses in Frama-C are written in a functional style. How-
ever Frama-C’s value analysis (whose results are used by many
other plug-ins) relies on hashconsing (Filliâtre and Conchon 2006)
and memoization, which are both implemented with mutable data
structures. More generally, Frama-C makes use of imperative fea-
tures in order to improve efficiency. For instance, the abstract syn-
tax tree (inherited from CIL) contains many mutable fields. Besides,
Frama-C has a global state which is composed of many global ta-
bles.

4.4 Multi-project framework
Frama-C is able to handle several ASTs simultaneously. This al-
lows to build slicing plug-ins where an original AST is navigated
through while a reduced AST is being built. Each of these ASTs
has its own state (containing for instance the results of the analy-
ses that have been run on this AST). The AST and corresponding
state form what is called a project (Signoles 2009). The desirable
“safety property” of projects is the absence of interference between
two distinct projects. To enforce this property, each global mutable
value of Frama-C must be “projectified”. A set of functors are pro-
vided to this effect (these functors add a project-aware indirection
to any mutable data that is used by any of the functions made visible
by the plug-in). We wish OCaml’s type system helped us enforce
this rule, but we plan to move to dynamic tags to detect at least
at analysis-time when a variable that should have been projectified
wasn’t.

4.5 Journalization
During an interactive session, Frama-C journalizes most of the ac-
tions which modified its global state. This means that, like Caveat,
it generates an OCaml script retracing what happened during the
session. The journal may be compiled and statically or dynami-
cally linked with the Frama-C kernel in order to replay the same
actions. Furthermore, the journal can be used to grasp Frama-C’s
internals (translating GUI actions into function calls), and it is pos-
sible to modify it before compiling and replaying it. As for dynamic
loading, phantom types allow to safely implement this feature (see
Section 4.6).

4.6 Phantom types for dynamic typing in a static setting
Both dynamic loading and journalization rely on phantom types
(Rhiger 2003). Phantom types — parameterized types which em-
ploy their type variables for encoding meta-information — are used
in both cases to ensure the dynamic safety of function calls which
cannot be checked by the OCaml type system. Indeed we provide
a library of dynamic typing. Its implementation requires the use
of unsafe features (through OCaml standard library’s module Obj)
but phantom types allow to provide a safe interface: the use of the
library cannot break type safety (as long as there is no implemen-
tation error in the library).

5. Conclusion
We have not yet considered the point of view of the external Frama-
C plug-in developer. We hope to see in the future many useful plug-
ins written outside the circle of the initial developers. It is too early
to draw conclusions on the consequences of the choice of OCaml as
the platform’s language for this goal. Responses so far have ranged
from the enthusiastic (“and it’s even written in OCaml”) to the
rejection (“[...]drawback that the extensions have to be written in
Ocaml[sic]”), with in the middle at least one person who decided
to learn OCaml because there was something s/he wanted to do
with Frama-C.

Acknowledgments
We would like to acknowledge the help of our colleagues at ProVal,
at INRIA Sophia Antipolis’ projects Everest and now Marelle,
and at CEA LIST, in the building of Frama-C. The feedback of
users of Frama-C within the CAT project, at Fraunhofer FIRST
or elsewhere has been great. The anonymous referees suggested
various improvements to this experience report. Special thanks go
to the developers of the OCaml system.

Keywords OCaml, software architecture, plug-ins, static analysis

285

References
Patrick Baudin, Anne Pacalet, Jacques Raguideau, Dominique Schoen, and

Nicky Williams. Caveat: a tool for software validation. In Dependable
Systems and Networks, 2002, pages 537+, 2002.

Patrick Baudin, Jean-Christophe Filliâtre, Thierry Hubert, Claude Marché,
Benjamin Monate, Yannick Moy, and Virgile Prevosto. ACSL: ANSI C
Specification Language (preliminary design V1.4), preliminary edition,
October 2008. URL http://frama-c.cea.fr/acsl.html.

Géraud Canet, Pascal Cuoq, and Benjamin Monate. A value analysis for C
programs, 2009. To appear in the proceedings of SCAM2009.

Sylvain Conchon and Jean-Christophe Filliâtre. A persistent union-find data
structure. In ML ’07: Proceedings of the 2007 workshop on Workshop
on ML, pages 37–46, New York, NY, USA, 2007. ACM. ISBN 978-1-
59593-676-9. doi: http://doi.acm.org/10.1145/1292535.1292541.

Sylvain Conchon, Jean-Christophe Filliâtre, and Julien Signoles. Designing
a generic graph library using ML functors. In Marco T. Morazán, editor,
Trends in Functional Programming, volume 8 of Trends in Functional
Programming, pages 124–140. Intellect, UK/The University of Chicago
Press, USA, 2008. ISBN 978-1-84150-196-3.

Pascal Cuoq. Documentation of Frama-C’s value analysis plug-
in, 2008. URL http://frama-c.cea.fr/download/
frama-c-manual-Lithium-en.pdf.

Pascal Cuoq and Damien Doligez. Hashconsing in an incrementally
garbage-collected system: a story of weak pointers and hashconsing in
OCaml 3.10.2. In ML ’08: Proceedings of the 2008 ACM SIGPLAN
workshop on ML, pages 13–22, New York, NY, USA, 2008. ACM. ISBN
978-1-60558-062-3.

David Delmas, Stéphane Duprat, Patrick Baudin, and Benjamin Monate.
Proving temporal properties at code level for basic operators of con-
trol/command programs. In 4th European Congress on Embedded Real
Time Software, 2008.

Jean-Christophe Filliâtre and Sylvain Conchon. Type-safe modular hash-
consing. In ML ’06: Proceedings of the 2006 workshop on ML, pages
12–19, New York, NY, USA, 2006. ACM. ISBN 1-59593-483-9.

Xavier Leroy. A syntactic theory of type generativity and sharing. Journal
of Functional Programming, 6:1–32, 1996.

Yaron Minsky. Caml trading: Experiences in functional programming on
Wall Street. In Wouter Swierstra, editor, The Monad.Reader, April 2007.

Benjamin Monate and Julien Signoles. Slicing for security of code. In Peter
Lipp, Ahmad-Reza Sadeghi, and Klaus-Michael Koch, editors, TRUST,
volume 4968 of Lecture Notes in Computer Science, pages 133–142.
Springer-Verlags, March 2008.

Ravi Nanavati. Experience report: a pure shirt fits. SIGPLAN Not., 43(9):
347–352, 2008. ISSN 0362-1340.

George C. Necula, Scott Mcpeak, Shree P. Rahul, and Westley Weimer.
CIL: Intermediate language and tools for analysis and transformation
of C programs. In International Conference on Compiler Construction,
pages 213–228, 2002.

Famantanantsoa Randimbivololona, Jean Souyris, Patrick Baudin, Anne
Pacalet, Jacques Raguideau, and Dominique Schoen. Applying formal
proof techniques to avionics software: A pragmatic approach. In FM
’99: Proceedings of the Wold Congress on Formal Methods in the De-
velopment of Computing Systems-Volume II, pages 1798–1815, London,
UK, 1999. Springer-Verlag. ISBN 3-540-66588-9.

Morten Rhiger. A foundation for embedded languages. ACM Transactions
on Programming Languages and Systems (TOPLAS), 25(3):291–315,
2003. ISSN 0164-0925.

Julien Signoles. Plug-in development guide, 2008. URL http://
frama-c.cea.fr/download/plug-in_development_guide.pdf.

Julien Signoles. Foncteurs impératifs et composés: la notion de projets
dans Frama-C. In Actes des Journées Francophones des Langages
Applicatifs, pages 37–54, January 2009. In French.

286

