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ABSTRACT
In this paper, we develop an architecture for principal com-
ponent analysis (PCA) to be used as an outlier detection
method for high-speed network intrusion detection systems
(NIDS). PCA is a common statistical method used in mul-
tivariate optimization problems in order to reduce the di-
mensionality of data while retaining a large fraction of the
data characteristic. First, PCA is used to project the train-
ing set onto eigenspace vectors representing the mean of the
data. These eigenspace vectors are then used to predict
malicious connections in a workload containing normal and
attack behavior. Our simulations show that our architec-
ture correctly classifies attacks with detection rates exceed-
ing 99% and false alarms rates as low as 1.95%. For next
generation NIDS, anomaly detection methods must satisfy
the demands of Gigabit Ethernet. FPGAs are an attractive
medium to handle both high throughput and adaptability
to the dynamic nature of intrusion detection. Using hard-
ware parallelism and extensive pipelining, our architecture
is implemented on FPGAs to achieve Gigabit link speeds.

1. INTRODUCTION
Traditionally, intrusion detection techniques fall into two
categories: signature detection and anomaly detection. Sig-
nature detection, or misuse detection, searches for well-known
patterns of attacks and intrusions by scanning for pre-classified
signatures in TCP/IP packets. On the other, hand anomaly
detection can detect new intrusions while misuse detection
may not. However, a drawback is that anomaly detection
methods suffer from false alarms.

Reconfigurable hardware solutions are an attractive imple-
mentation choice for anomaly detection due to their inher-
ent parallelism, pipelining characteristics, and adaptability.
While our previous work show the development of hardware
architecture for FPGAs that is effective at capturing net-
work characteristics [2], in this paper we introduce a novel
architecture for Principal Component Analysis (PCA) [1]
which is used as an outlier detection technique.

2. PCA AS AN OUTLIER DETECTION
TECHNIQUE

PCA reduces the amount of dimensions required to classify
new data and produces a set of principal components, which
are orthonormal eigenvalue/eigenvector pairs[1]. In other
words, it projects a new set of axes which best suit the data.
In our implementation, these set of axes represent the nor-
mal connection data. Outlier detection occurs by mapping
live network data onto these ’normal’ axes and calculating
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the distance from the axes. If the distance is greater than a
certain threshold, then the connection is classified as an at-
tack. The principal components derived from the covariance
matrix are usually different from the principal components
generated from the correlation matrix. When some values
are much larger than others, then their corresponding eigen-
values have larger weights.

First, each eigenvalue of a principal component corresponds
to the relative amount of variation it encompasses. The
larger the eigenvalue, the more significant its corresponding
projected eigenvector. Therefore, the principal components
are sorted from most to least significant. If a new data item
is projected along the upper set of the significant principal
components, it is likely that the data item can be classified
without projecting along all the principal components. Sec-
ondly, eigenvectors of the principal components represent
axes which best suit a data sample. Points which lie at a far
distance from these axes would exhibit abnormal behavior.
Outliers measured using the Mahanobolis distance are pre-
sumably network connections that are anomalous. Using a
threshold value (t), any network connection with a distance
greater than the threshold is considered an outlier. In our
work, an outlier is implied to be an attack.

3. FRAMEWORK AND IMPLEMENTATION
All anomaly detections require an offline training or learn-
ing phase. Principal component analysis clearly separates
the offline and online detection phases. This property is an
advantage for hardware implementation. Figure 1 outlines
the steps involved in PCA. In the offline phase, labeled train-
ing data is taken as input and a mean vector of the whole
sample is computed. Ideally these data sets are a snap-
shot of activity in a real network environment. Secondly,
a correlation matrix is computed from the training data.
A correlation matrix normalizes all the data by calculating
the standard deviation. Next, eigenanalysis is performed on
the correlation matrix to extract independent orthonormal
eigenvalue/eigenvector pairs. These pairs make up the set
of principal components used in online analysis. Lastly, the
sets of principal components are sorted by eigenvalue in de-
scending order. The eigenvalue is a relative measure of the
variance of its corresponding eigenvectors. Using PCA to
extract the most significant principal components is what
makes it a dimensionality reducing method because only
a subset of the most important principal components are
needed to classify any new data.

The online portion takes q major principal components and r

minor principal components and maps online data into the
eigenspace of those principal components. There are two
parallel pipelines, one for calculating the major component
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Figure 1: Principal Component Analysis for Network Intrusion Detection

variability score (MajC) and one for the minor (MinC). The
simulations show that adding the MinC pipeline increases
the detection ability and decreases the false alarm rate of
using PCA for anomaly detection. For hardware design,
the most computationally expensive portion of PCA is per-
forming eigenvector calculations and sorting. The process
of calculating eigenvectors is sequential and difficult to par-
allelize. Fortunately, this task is part of the offline phase.

The reprogrammability of FPGAs is an important advan-
tage in our framework because our architecture tracks dif-
ferent types of network characterisrics and modify itself ac-
cording to the selected features; it would be extremely costly
to develop a fixed architecture that tracks the same type
of network characteristics. Using RocketIO multi gigabit
transceivers (MGT) available on new Virtex FPGA chips, it
is possible to stream packet straight into the FPGA without
suffering any slowdown. The RocketIO tranceivers can be
used in conjunction with Gigabit Ethernet ports. As packets
stream through the MGT in 1,2, or 4 byte chunks, a state
machine is used to extract the related header fields from the
packet.

4. SIMULATION RESULTS
For the FPGA implementation, a single principal compo-
nent score pipeline was implemented to study the impacts
of parallelizing PCA. The target device XC2VP100 (speed
grade: -5) was chosen from the Xilinx Virtex II Pro family
[4]. Synplify Pro 7.2 was used for synthesis and Xilinx ISE
5.2i for place and route statistics. We also vary the number
of principal components to calculate a principal component
score between four and eight. This workload is feasible for a
real world implementation of PCA. In our simulations, each
input data contained 28 fields for which we extracted 2 to 7
principal components.

In addition to classifying network connections based on their
Major Principal Component score (MajC), another score
based on the minor principal components (MinC) was cal-
culated [3]. The number of major principal components (q)
accounts for the majority of the data’s correlation struc-
ture while the minor principal components (r) account for
a small portion of the variation. This way, when attacks
are detected, there is additional information if attacks do
not conform to the normal correlation structure. For this
study, we used minor components with eigenvalues less then
0.20. Figure 2 plots the detection and false alarm rates for
different numbers of principal components used (q). The

results show that PCA detects a high percentage of attacks
(over 99.2%) with low false alarm rates (under 12.5%) even
though the ratio of attack to normal connection is high.
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Figure 2: Detection & False Alarm Rate vs. q

Our FPGA design for PCA exploits parallelism on multi-
ple levels. First, MajC and MinC scores are calculated in
parallel. Secondly, within each pipeline, element by element
matrix operations execute concurrently. The structure and
layout of FPGAs lend well to matrix operations. And third,
subtracting the mean from any new data tuple is performed
outside the pipeline. The results from this operation are dis-
tributed to the MajC and MinC pipelines in data parallel
manner. As a result, for a representative workload, our im-
plementation outputs at a link speed of 23.76 Gbps; enough
to support Gigabit line rates.
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