118 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 3, NO. 1, MARCH 2008

An FPGA-Based Network Intrusion
Detection Architecture

Abhishek Das, Student Member, IEEE, David Nguyen, Joseph Zambreno, Member, IEEE,
Gokhan Memik, Member, IEEE, and Alok Choudhary, Fellow, IEEE

Abstract—Network intrusion detection systems (NIDSs) mon-
itor network traffic for suspicious activity and alert the system
or network administrator. With the onset of gigabit networks,
current generation networking components for NIDS will soon
be insufficient for numerous reasons; most notably because the
existing methods cannot support high-performance demands.
Field-programmable gate arrays (FPGAs) are an attractive
medium to handle both high throughput and adaptability to the
dynamic nature of intrusion detection. In this work, we design
an FPGA-based architecture for anomaly detection in network
transmissions. We first develop a feature extraction module (FEM)
which aims to summarize network information to be used at a
later stage. Our FPGA implementation shows that we can achieve
significant performance improvements compared to existing soft-
ware and application-specific integrated-circuit implementations.
Then, we go one step further and demonstrate the use of principal
component analysis as an outlier detection method for NIDSs.
The results show that our architecture correctly classifies attacks
with detection rates exceeding 99% and false alarms rates as low
as 1.95%. Moreover, using extensive pipelining and hardware
parallelism, it can be shown that for realistic workloads, our
architectures for FEM and outlier analysis achieve 21.25- and
23.76-Gb/s core throughput, respectively.

Index Terms—Feature extraction, field-programmable gate ar-
rays (FPGA), network intrusion detection system (NIDS), prin-
cipal component analysis (PCA).

I. INTRODUCTION

RADITIONALLY, intrusion detection techniques fall into
Ttwo categories: 1) signature detection and 2) anomaly
detection. Signature detection, or misuse detection, searches
for well-known patterns of attacks and intrusions by scanning
for preclassified signatures in TCP/IP packets. This model
of network monitoring has extremely low false-alarm rates
but cannot detect new attacks. String matching [10] is an
example of a signature-based method for detecting suspicious

Manuscript received May 5, 2006; revised September 7, 2007. This work
was supported in part by the National Science Foundation (NSF) under Grants
NSF-ITR CCR-0325207, CNS-0406341, CNS-0551639, IIS-0536994, and
CCR-0325207, in part by the Air Force Office of Scientific Research (AFOSR)
Award FA9550-06-1-0152 and in part by the Department of Energy (DoE)
under CAREER Award DE-FG02-05ER25691. The associate editor coordi-
nating the review of this manuscript and approving it for publication was Prof.
Klara Nahrstedt.

A. Das, G. Memik, and A. Choudhary are with the Electrical Engineering and
Computer Science Department, Northwestern University, Evanston, IL 60208
USA (e-mail: ada829 @ece.northwestern.edu; memik @eecs.northwestern.edu;
choudhar@ece.northwestern.edu).

D. Nguyen is with SanDisk Corporation, Milpitas, CA 95035 USA.

J. Zambreno is with the Electrical and Computer Engineering Science Dept.,
Towa State University, Ames, IA 50011-2010 USA (e-mail: zambreno @iastate.
edu).

Digital Object Identifier 10.1109/TTFS.2007.916288

payloads in packets. Rule-based intrusion detection systems
such as Bro [8] or Snort [33] use known rules to identify known
attacks in packet payloads, such as requests for nonexisting
services, strange flag combinations, or virus attack signatures
or malicious strings. A number of software and hardware im-
plementations have been proposed in this area, some of which
utilized reconfigurable hardware architectures [30], [32], [34].

The second category of intrusion detection, anomaly detec-
tion, is used to capture behavior that deviates from the norm.
This method takes as input training data to build normal net-
work behavior models. Alarms are raised when any activity de-
viates from the normal model. Although anomaly detection can
detect new intrusions, it may suffer from false alarms, including
both raised alarms for normal activity (false positives) and quiet
alarms during actual attacks (false negatives). Despite this ob-
vious drawback, the high rate of increase in new attacks and
change in the pattern of old attacks has made anomaly detection
an indispensable technique in NIDSs. Since network line speeds
have reached Gigabit rates and anomaly detection is computa-
tion intensive, software-based techniques are inadequate. Re-
configurable hardware solutions exhibit an attractive implemen-
tation choice for anomaly detection due to their inherent paral-
lelism, pipelining characteristics, and adaptability. As more so-
phisticated methods are designed, algorithms and methods can
be tailored specifically to their implementation environment.
Although researchers have started working on hardware imple-
mentations of data mining methods, such as the apriori algo-
rithm [6], to the best of our knowledge, there are no hardware ar-
chitectures specifically tailored to PCA or network anomaly de-
tection. Fig. 1 gives an overview of a network detection system
using both signature and outlier detection. A key point in this
figure is the use of feature extraction modules to obtain concise
information from a live packet stream.

In this paper, we propose a new architecture for building an
efficient NIDS using FPGAs. Particularly, we focus on anomaly
detection. Our work is comprised of a new feature extraction
module (FEM) which summarizes the network behavior. It also
incorporates an anomaly detection mechanism using principal
component analysis (PCA) as the outlier detection method.
Both these modules are implemented on reconfigurable hard-
ware and can handle the gigabit throughput demands by modern
networks. The principal advantage of our technique is the high
detection rate of network intrusions.

The rest of this paper is organized as follows. Section II gives
an overview of our intrusion detection architecture. Section III
presents the FEM architecture and its components. Section IV
describes PCA in detail. The implementation details and simu-
lation results are illustrated in Section V. Section VI presents the

1556-6013/$25.00 © 2008 IEEE

DAS et al.: FPGA-BASED NETWORK INTRUSION DETECTION ARCHITECTURE

119

Data Abstraction

Packet Level

Connection Level

Feature Level

Live Packet Stream
(TCP/IP protocol)

Pre-processing Module

Feature Extraction

 Signature Detection

Anomaly Detection
Y |

Network Packet

il |

Outlier—based Methods

‘ ‘ Statistical Modeling ‘

1| |
"/

Learned Learned

Yy

A

Models Models

! Y

Threshold Comparison

Threshold Comparison

Y ¥

Intrusion Arbiter

i

Fig. 1. General network intrusion detection framework.

related work, and Section VII concludes the paper and presents
the areas of future work.

II. INTRUSION DETECTION ARCHITECTURE OVERVIEW

Our architecture for intrusion detection has two major
components. First, we propose an FEM which accurately char-
acterizes network behavior and provides an up-to-date view of
the network environment [4], [28]. Extraction of packet headers
alone cannot provide an accurate description of the network be-
havior. Depending on the application utilizing this information
(e.g., rule mining, classification), different properties, such as
connection duration, the number of SYN/FIN/RST flags sent,
etc. should be monitored. As we will describe in the following
sections, our architecture can be easily configured to gather
different types of information. By utilizing the reconfigurable
capabilities of FPGAs, these changes can be effectively per-
formed. Experimental results prove that our FEM architecture
is a viable alternative to expensive per-flow methods. In addi-
tion, our FEM implementation requires a constant amount of
memory and achieves a guaranteed performance level, impor-
tant characteristics for networking hardware design.

Second, we develop a novel architecture for intrusion de-
tection that uses PCA as an outlier detection method. PCA is
appealing since it effectively reduces the dimensionality of the

data and, therefore, reduces the computational cost of analyzing
new data. PCA methodology has been successfully used in
signal processing, namely the Karhunen Loeve Transformation
[15], and image processing for compression and restoration. In
the case of the KDD Cup 1999 data, where each connection
record has 41 features, we will show that PCA can effectively
account for up to 50% of the variation or relative significance
of the data with only five principal components. Being able to
capture such a large fraction of the variation by only using a
small number of features is certainly a desirable property for
the hardware implementation, (i.e., such an algorithm is likely
to reduce the hardware overhead significantly).

It should be noted that our techniques are considerably dif-
ferent from software intrusion detection mechanisms such as
SNORT. The latter is an open source intrusion detection and
prevention tool which combines the benefits of signature and
anomaly detection methods. On the other hand, our proposed ar-
chitecture will help only in anomaly detection. Hence, in order
to have sound and highly efficient intrusion detection, a com-
bination of the SNORT and our PCA architecture would be
more effective. However, our module will not completely re-
place SNORT.

Fig. 2 illustrates the overall architecture of our intrusion de-
tection system. In the first phase, the network header data are

120

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 3, NO. 1, MARCH 2008

Packet Header data [
Data -
Feature Extraction Principal Component
Analysis
8,16,32b B
External clk - | —
FPGA clk
RocketlO MGT RocketlO MGT

Asynchronous Interface

Fig. 2. FPGA architecture with feature extraction and PCA.

extracted from the packets fed into the system. The FEM, in the
next phase, uses these headers to extract the temporal and con-
nection-based characteristics of the network. We discuss FEM
in detail in Section III. This information or, in other words, the
network features are then processed by the anomaly detection
phase, which here is done by using PCA (as shown in the figure).
Formulation of PCA and its application in anomaly detection are
presented in Section I'V. Details regarding the framework imple-
mentation are dealt with in Section IV-E.

III. FEATURE EXTRACTION MODULE (FEM)

Independent of the way in which anomaly detection is per-
formed, the first step in any NIDS is flow monitoring and fea-
ture extraction. Feature extraction mines more information than
conventional techniques that only monitor a small amount of
features from network packets. In this section, we introduce our
FEM, which characterizes network behavior within an interval
of time or specified interval of connections. Network behavior
represented by the FEM sufficiently reflects the current state of
the network. Thus, a real-time profile of the network is always
available for processing with intrusion detection schemes, such
as data mining, outlier analysis, statistical methods, etc. [20].

The architecture’s data-storage component models the idea
of sketches [25], which are used in data-stream modeling for
summarizing large amounts of information requiring a small
constant amount of memory. Sketches are a probabilistic sum-
mary technique for analyzing large network streams without
keeping a per-flow state that make vector projections onto other
sketches to infer additional information. Our case study will
show how the relationships between sketches aid in inferring
additional network characteristics that are not explicitly mon-
itored. To achieve fast execution and effective adaptation, we
implement our architecture on an FPGA. The regular structure
of sketches maps well onto an FPGA. We exploit the inherent
parallelism in the sketch to increase throughput and obtain sig-
nificant link speeds.

It is possible to model anomalous behavior associated with
two general types of intrusions: 1) time based and 2) connec-
tion based. Time-based attacks cause an increase in network ac-

tivity in a period of time, referred to as a “bursty attack.” SYN
floods are an example, where connection tables are flooded in
a period of time, disabling the victim machine to service new
connection requests. Connection-based attacks do not have a
recognizable temporal aspect. They are sometimes referred to
as “pulsing zombie attacks.” Port scans may release connec-
tion requests in the span of seconds or days. Therefore, intru-
sion detection methods focusing on large volumes of network
activity are ineffective. Our architecture can capture both con-
nection and time-based statistics.

A. FEM Functions

FEM supports the following functions:

e UPDATE (k, v) to change the value in the sketch;

* ESTIMATE (k) to correctly retrieve a value from the
sketch, where k is a key input to the hash functions and v
is the feature value. The key k can be any combination of
the 5-tuple fields present in TCP/IP packet headers: source
IP, destination IP, source port, and destination port and
protocol. The 6-b flag field, also in a packet header, assists
the control logic for intelligent hashing of the 5-tuple fields
depending on what network characteristics are analyzed.
Note that the protocol field is redundant in our case since
we are analyzing only TCP/IP packets. Since the size of
the input to FEM block is 120 b, and the first four fields
make up 112 b, the remaining 8-b space is kept for the
protocol field. UPDATE queries are used to change the
value for a key, whereas ESTIMATE queries are used to
read a value back.

B. FEM Architecture

Fig. 3 highlights the main components of our architecture. It
consists of a feature controller (FC), hash functions (HF), fea-
ture sketch (FS), and a data aggregate (DA). The combination
of all these components provides a fast, scalable, and accurate
platform from which important network characteristics can be
monitored and tracked in real time. H is the number of hash
functions within each FS, while K is the size of the hash ta-
bles in FS. Thus, in this figure, H = 4. The feature controller

DAS et al.: FPGA-BASED NETWORK INTRUSION DETECTION ARCHITECTURE

121

Feature Sketch (FS)
| Hx K I

Feature Controller Data Aggregate

— HF, 20
[destip —
- H[:2 10 10 |
[srcport —
Fc U DA
| HFs 1 20 B

| HF, 10 10]

Fig. 3. FEM with one feature sketch.

(FC) coordinates the inputs to the hash functions using the flags
of a packet header. The reconfigurable aspects of FPGAs make
reprogramming possible to monitor a variety of network statis-
tics. Our case study in Section III-C focuses on open connec-
tion requests originating from or incoming to hosts by utilizing
the SYN and ACK flags. Other possible statistics include the
number of live connections; the flow size of active connections;
amount of service-related traffic; or connection-based statistics,
such as the number of connections for specific services on a host.
These measures would utilize the PSH (push), RST (reset), FIN
(finish), and URG (urgent) flags.

The FS is an application of sketches used for data-stream
modeling. It uses a constant amount of memory and has constant
per-record update and reconstruction cost. Each row in the FS
is accessed in parallel with different hash functions. This char-
acteristic favors FPGAs. An FS contains H rows each of length
K. When H > 1, the accuracy of ESTIMATE queries improves.
Section V-A presents the accuracy results.

Each row in the FS is addressed by a different HF. This
way, the distribution of information varies for each row and
the accuracy is increased. We chose the Jenkins Hash for its
speed and provable scatter properties. It is implemented in var-
ious Linux kernels as a component to the IPtables connection
tracking module [16], [26]. With an FPGA, all hash functions
are computed in parallel. Also, by pipelining the Jenkins Hash,
FEM can accept a packet on every clock cycle, thus increasing
throughput.

Finally, the data aggregate (DA) component takes H values
and estimates the actual value for a query. Using statistical esti-
mation techniques, we show that ESTIMATE queries to the FS
are accurate. The heuristic we implement to estimate the value
of a query takes the minimum of the H values in the FS. The
minimum value suffers the least from collisions. Other estima-
tion techniques are plausible [20], but we found the minimum
estimate usually gives the best results and the least hardware
complexity. Minimum comparisons are performed in parallel
such that this module is not on the critical path of FEM.

C. Case Study: Application of FEM on Edge Router

In this section, we present an example in which FEM is used
for flow monitoring on the edge router. Fig. 4 is a simple di-
agram of network traffic occurring at any two nodes A and B.
Node A represents outgoing traffic. The figure depicts different

Fig. 4. Network traffic example.

| FS, (K=(DIP, DPORT), V=(SYN-SYN/ACK)) |—

| FS, (K=DIP, V=(SYN-SYN/ACK)) Data
Analysis

Packet Stream

Fig. 5. Feature sketches executed in parallel.

| FS5 (K=SIP, V=(SYN-SYN/ACK)) |»

| FS, (K=(SIP, DIP), V=(SYN-SYN/ACK)) }—

types of incoming traffic to node B through different ports. Port
scans and SYN floods access any range of ports.

If the FEM is placed at the host level, for example at A, the
architecture is simple. Each node is aware of its location when
processing network packets so the feature controller FC easily
preserves connection ordering. However, when placing FEM at
a router, additional logic is needed to preserve connection or-
dering. For example, when A and B communicate with each
other, the source IP/port and destination IP/port fields in a packet
are not consistent with the particular node which started the con-
nection.

This example illustrates how to apply FEM to monitor net-
work activity usually associated with SYN flood and port scans
from a router’s perspective. Each FEM consists of a number of
FSs. For each FS, the key is denoted K and the feature value
is denoted V. The source IP is designated SIP, destination IP
DIP, source port SPORT, destination port DPORT, and protocol
PROTO. The flags applicable for this case study are the SYN
and ACK flags. We want to track the behavior associated with
these two attacks.

First, it is known that SYN flood traffic is directed at a (DIP,
DPORT) combination. Port scans are more flexible and use any
combination of (DIP, DPORT). With an array of FSs, network
behavior can be characterized for any given window of packets
in a network stream. To monitor the behaviors of port scans and
SYN floods, we propose the setup in Fig. 5.

122 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 3, NO. 1, MARCH 2008

Four FSs are accessed and updated in parallel with a stream
of packets. Each FS monitors a different network characteristic.
Our architecture favors FPGA implementation since the fea-
ture controller can be reprogrammed and easily placed back into
the network without any modification to the core architecture.
Section V-B details the FPGA implementation and performance
of a FEM module with one FS. Since multiple FSs are accessed
in parallel, the width of the FEM has a minor impact on perfor-
mance.

F'S; aids in SYN flood detection by monitoring the number
of unserviced SYN requests for specific services. When a ma-
chine services SYN requests, it responds with a packet having
the SYN and ACK flags set. For an SYN packet, a count value
is incremented. For a SYN/ACK response, the count is decre-
mented. By placing FS1 at an edge router, connection ordering
relative to the DIP is easily preserved by checking the flags in the
packet. All connections in FS1 are candidates for SYN floods
and we denote this set as SYNFLOODset.

F'S; monitors hosts with a large number of partially com-
pleted SYN requests. This activity indicates vertical scans or
SYN floods. Notice F'Ss is a superset of F'S7. F'Ss contains all
types of traffic at a particular IP. By querying both FSs with ES-
TIMATE, we can approximate the percentage of types of traffic
at any DIP. Removing SYNFLOODset from F'Ss leaves candi-
dates for vertical scans, VSCANset.

F'S3 observes the traffic from any SIP that causes incomplete
SYN requests. This measure includes vertical, horizontal, and
block scans. To differentiate this activity, F'Sy is implemented
to oversee the amount of traffic between any two hosts.

For an SIP € FSN, if there is a DIP € V.SC AN, and FS3 re-
turns a value greater than a threshold (predetermined by other in-
trusion detection algorithms), we claim ST P, is vertically scan-
ning DI P,. If not, SI P, may be horizontally or block scanning
on the network. Using both F'S3 and F'Sy, we are able charac-
terize additional network behavior.

The main difference between each FS is how the FC coor-
dinates address each FS. As described, the flags SYN and ACK
are used to intelligent configure each FEM. Nonetheless, our ar-
chitecture is general enough to measure other network charac-
teristics. Using SYN/FIN relationships for opening and closing
network connections, it is possible to keep an FS updated with
traffic flow sizes.

FEM can be employed at both the edge routers or on specific
hosts. Our example contains extra logic for router implemen-
tation (connection ordering). Host implementation would actu-
ally be simpler because the perspective of network traffic is nar-
rower.

IV. PRINCIPAL COMPONENT ANALYSIS

Once the features are extracted, the resulting values are fed
into an outlier detection scheme in order to capture the attacks.
Our outlier detection architecture is based on PCA. PCA is suit-
able for highly dimensional problems. It reduces the amount
of dimensions required to classify new data. At its core, PCA
produces a set of principal components, which are orthonormal
eigenvalue/eigenvector pairs. In other words, it projects a new
set of axes which best suit the data. In our implementation, these
sets of axes represent the normal connection data. Outlier detec-

tion occurs by mapping live network data onto these “normal”
axes and calculating the distance from the axes. If the distance
is greater than a certain threshold, then the connection is classi-
fied as an attack. This section introduces PCA and begins with
the notion of calculating distance in a high dimensional space.

A. Distance Calculation

Calculating distance from a point is a fundamental opera-
tion in outlier detection techniques. Methods include nearest-
neighbor, k;, nearest neighbor, local outlier factor, etc. In gen-
eral, the distance metric used is Euclidean distance. This is the
primary calculation in the nearest neighbor approach. Let x =
(x1,22,...,2p) and y = (y1,%2,...,Yp) be two p-dimen-
sional observations. The Euclidean distance is defined as

dx,y) =V (x-y)(x-Yy).)

In (1), each feature carries the same weight in calculating the
Euclidean distance. However, when features have a varied
weight distribution or are measured on different scales, then the
Euclidean distance is no longer adequate. The distance metric
needs to be modified to reflect the distribution and importance
of each field in the data. One of these metrics is known as the
Mahalanobis distance

d*(x,y) = (x—y)S7 (x~y) @
where S~ is the sample covariance matrix.

B. PCA Methodology

Anomaly detection systems typically require more data than
what is available at the packet level. Using preprocessing and
feature extraction methods, the data available for anomaly de-
tection is high dimensional in nature. The computational cost
of processing massive amounts of data in real time is immense.
Therefore, applying PCA as a data reduction tool while retaining
the important properties of the data is useful. PCA works to
explain the variance-covariance structure of a set of variables
through a new set of orthonormal projection values which are
linear combinations of the original variables. Principal compo-
nents are particular linear combinations of p random variables

X1,X5,...,X,. These variables have three important proper-
ties.

1) X1,X>,..., X, are uncorrelated.

2) Xy, X,,..., X, are sorted in descending order.

3) Xiotal = Zf:o X is the total variance that is equal to the
sum of the individual variances.

These variables are found from eigenanalysis of the
covariance or correlation matrix of the original variables
Xo1, Xo2, ..., Xop [17], [18].

Let the original data, in this case, the training data, X be an
n X p data matrix of n observations with each observation com-
posed of p fields (or dimensions) X1, X, ..., X,. In our work,
we replaced the covariance matrix S ! with the correlation ma-
trix R~! since many fields in the training set were measured on
different scales and ranges. Using the correlation matrix more
effectively represents the relationships between the data fields.

Let R be a p x p correlation matrix of X, X»,..., X,,.
If (A1,e1),(X2,€2),...,(Np,ep) are the p eigenvalue-eigen-

DAS et al.: FPGA-BASED NETWORK INTRUSION DETECTION ARCHITECTURE

vector pairs of the correlation matrix R, then the ¢th principal
component is

y; =ej(x — X)
:67;1(:1:1 — fl) + 62'2(.272 — EQ) +...

+eip($p_fp)7 22112711)
where
AL>2A 2> .02 20
e = e;1,¢€52,...,¢e; is the ith eigenvector;

x' = (z1,%2,...,2,) is the observed data along the vari-
ables X1, Xy, ..., Xp;

X' = (X1,X2,...,X,) is the sample mean vector of the
observation data.

The ith principal component has a sample variance A; and
the sample covariance/correlation of any pair of principal com-
ponents is equal to zero. This satisfies that PCA produces a set
of independent variables. Thus, the total variance of a sample is
the sum of all the variances accounted for by the principal com-
ponents. The correlation between any two variables ¢ and j is
calculated by

pis = cov(X;, X;) 3)
0i0;
where o, is the standard deviation of X, over the sample data.

The principal components from the sample correlation ma-
trix have the same properties as principal components from a
sample covariance matrix. As all principal components are un-
correlated, the total variance in all of the principal components
is

The principal components derived from the covariance matrix
are usually different from the principal components generated
from the correlation matrix. When some values are much larger
than others, then their corresponding eigenvalues have larger
weights. Since the KDD cup data has many items with varying
scales and ranges, the correlation matrix is utilized.

C. Applying PCA to Outlier Detection

This section outlines how PCA is applied as an outlier detec-
tion method. In applying PCA, there are two main issues: how
to interpret the set of principal components, and how to calcu-
late the notion of distance.

First, each eigenvalue of a principal component corresponds
to the relative amount of variation it encompasses. The larger the
eigenvalue is, the more significant its corresponding projected
eigenvector should be. Therefore, the principal components are
sorted from most to least significant. If a new data item is pro-
jected along the upper set of the significant principal compo-
nents, it is likely that the data item can be classified without
projecting along all of the principal components. In other fields,
such as DSP and image compression and restoration, this is a
useful property.

Second, eigenvectors of the principal components represent
axes which best suit a data sample. If the data sample is the
training set of normal network connections, then those axes are
considered normal. Points which lie at a far distance from these

123

axes would exhibit abnormal behavior. Outliers measured using
the Mahalanobis distance are presumably network connections
that are anomalous. Using a threshold value (¢), any network
connection with a distance greater than the threshold is consid-
ered an outlier. In our work, an outlier is implied to be an attack.

Consider the sample principal components 41, Y2, . . ., ¥, of
an observation x where

yi=el(x—X), i=1,2,...,p.

The sum of squares of the partial principal component scores

is equal to the principal component score

Py2
Ji _

equating to the Mahanobolis distance of the observation X from
the mean of the normal sample data set [17].

2 2 2
Y1, Y2 Yp

e U Bt 5
N T, ©)

D. PCA Framework

All anomaly detections require an offline training or learning
phase whether those methods are outlier detection, statistical
models, or association rule mining. Many times, the mecha-
nisms applied in the online and offline phases are tightly cou-
pled. PCA, however, clearly separates the offline and online de-
tection phases. This property is an advantage for hardware im-
plementation. Another major advantage of PCA is its reduction
of features. As we will show in the following sections, PCA ef-
fectively reduces the number of processed features from 40 to
8. This reduction linearly translates into area reduction in hard-
ware and, hence, performance improvement. As a result, we can
run our system at gigabit links. Fig. 6 outlines the steps involved
in PCA.

In the offline phase, labeled training data are taken as input
and a mean vector of the whole sample is computed. Ideally,
these data sets are a snapshot of activity in a real network
environment. Also, these data sets should contain only normal
connections. Second, a correlation matrix is computed from
the training data. A correlation matrix normalizes all of the
data by calculating the standard deviation. Next, eigenanalysis
is performed on the correlation matrix to extract independent
orthonormal eigenvalue/eigenvector pairs. These pairs make up
the set of principal components used in online analysis. Finally,
the sets of principal components are sorted by eigenvalue in
descending order. The eigenvalue is a relative measure of the
variance of its corresponding eigenvectors. Using PCA to ex-
tract the most significant principal components is what makes
it a dimensionality reducing method because only a subset of
the most important principal components is needed to classify
any new data.

To increase the detection rate, we use a modified version of
PCA. In addition to using the most significant principal com-
ponents (¢) to find intrusions, we have found that it is helpful
to look for intrusions along a number of least-significant com-
ponents () as well. The most significant principal components
are part of the major principal component score (MajC) and the
less-significant components belong to calculating a minor prin-
cipal component score (MinC). MajC is used to detect extreme

124 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 3, NO. 1, MARCH 2008

Offline Phase of Principal Component Analysis / 9
Major/Minor PC’s /' 1
T A e]
/ // / tm
t
Mean Vector »| Correlation Matrix » EigenAnalysis —— Sort PC’s » Threshold Calculation /' M

Training Data

Online Phase

Y

Zero Mean Data

Map to PC space

_| Threshold

Comparison

Detection

Compute PC score

Fig. 6. PCA for network intrusion detection.

deviations with large values on the original features. These ob-
servations follow the correlation structure of the sample data.
However, some attacks may not follow the same correlation
model. MinC is used to detect those attacks. As a result, two
thresholds are needed to detect attacks. If the principal compo-
nents are sorted in descending order, then ¢ is a subset of the
highest values and r is a subset of the smallest components. The
MajC threshold is denoted ¢, while the MinC threshold is re-
ferred to as t¢,,,. An observation x is an attack if

> st ©)

The online portion takes ¢ major principal components
and r minor principal components and maps online data into
the eigenspace of those principal components. There are two
parallel pipelines—one for calculating the major component
variability score (MajC) and one for the minor (MinC). The
simulations show that adding the MinC pipeline increases
the detection ability and decreases the false alarm rate of
using PCA for anomaly detection. For hardware design, the
most computationally expensive portion of PCA is performing
eigenvector calculations and sorting. The process of calculating
eigenvectors is sequential and difficult to parallelize. However,
this task is part of the offline phase. We are primarily concerned
with accelerating online intrusion detection using PCA. For this
segment, the most important bottleneck is computing the PC
score. Fortunately, this task can be parallelized as we describe
in Section V-D.

E. NIDS Framework Implementation

The reprogrammability of FPGAs is an important advantage
in our framework because our architecture tracks different
types of network characteristics and modifies itself according
to the selected features. The design can be implemented in a
parameterizable ASIC which will provide better performance;
however, there is no need for this extra performance improve-
ment. Moreover, it would be extremely costly to develop a fixed
architecture that tracks the same type of network characteris-
tics. Using RocketIO multigigabit transceivers (MGT) available

on new Virtex FPGA chips, it is possible to stream packets
straight into the FPGA without suffering any slowdown. The
RocketlIO transceivers can be used in conjunction with gigabit
Ethernet ports. As packets stream through the MGT in 1-,2-,
or 4-B chunks, a state machine is used to extract the related
header fields from the packet. The logic in the state machine is
comprised of layer 2 (data-link layer) protocols and managing
offsets to extract certain data fields of variable length (8, 16, 48
b).

The feature extraction modules hash tuples of values (e.g.,
SIP,DIP, SPORT, DPORT), but the packet data are streamed
through the FPGA in specified chunks. Therefore, an asyn-
chronous interface between the MGT and the feature extraction
modules is required. These interfaces are highlighted on the
system overview shown in Fig. 2. Once all of the required
header fields are ready, handshaking is commenced and the
data tuple is shipped off to the next state of processing.

In some rare cases, the number of cycles to determine whether
a packet is malicious may exceed the time (in cycles) to process
the whole just before it is routed. In this situation, the packet
may get routed even before the intrusions are detected. However,
this type of race condition will never occur in our architecture
since it takes more cycles to process a complete packet than it
takes to extract header fields (which are usually at the head of the
packet) and ship them to the feature extraction module, which is
a stall-free pipelined design. After a data tuple is finished being
processed in the feature extraction module, it has the option of
being characterized by using PCA or having its data sent out of
the FPGA in the form of UDP packets to be processed using
other software-based methods.

At the feature extraction/PCA boundary, there is no need for
an asynchronous interface because the feature extraction mod-
ules run in parallel and, hence, FEM and PCA modules can be
directly tied to each other. Therefore, they all complete at the
same time and the results can be sent to the PCA in parallel as a
feature vector. However, if the hash functions for different fea-
ture extraction modules are not identical, then an asynchronous
interface is required.

Altogether, it is possible to implement this outlier detection
framework featuring PCA on an FPGA using RocketlO trans-
ceivers. It is possible to also send data out the MGT as UDP

DAS et al.: FPGA-BASED NETWORK INTRUSION DETECTION ARCHITECTURE

Y%accuracy
100%

K (FS row size) vs %accuracy

95%

90%

85% r—

80% 7

75%

1024 2048 4096 8192 16384

K (FS row size)

32768

Fig. 7. Effect of FS row length(K) on accuracy.

packets for additional software processing. The interfaces be-
tween each level of processing allows for the insertion of more
advanced feature extraction methods or other outlier detection
algorithms.

V. RESULTS

This section is divided into two main subsections presenting
the FPGA implementation and simulation results of the FEM
and PCA framework, respectively. First, we investigate the
accuracy of using feature sketches by testing different FS sizes.
For implementing FEM, we arbitrarily chose six days of traces
from the 1999 DARPA Intrusion Detection Evaluation [24].
Half of the traces contain labeled attacks and the other half do
not. Nonetheless, FS should accurately represent the network
environment. Then, we examine the performance of our PCA
architecture for outlier detection. We use the modified PCA for
three reasons: to increase the detection rate, to decrease the
false alarm rate, and because it can be tailored to FPGA design.
The following subsections discuss them in detail.

A. Simulations Results for FEM

In this section, we investigate the accuracy of using feature
sketches by testing different FS sizes. There are no known
benchmarks specifically compiled for feature extraction, so we
arbitrarily choose six days of traces from the 1999 DARPA
Intrusion Detection Evaluation [24].

We simulate an FS (K = (SIP,DIP,DPORT, SPORT),
V = (SYN — SYN/ACK)). Our test on the FS is more inten-
sive because more connections are simultaneously tracked. By
virtue of design, FS is constantly updating; so we stream in 24 h
of network activity and query the FS afterwards to compare the
FS estimate with exact per-flow results.

Fig. 7 presents the accuracy of using an FS. H represents the
number of rows in the FS and K represents the size of each
row. The accuracy is measured as the percentage of precisely
estimated flows (i.e., where the estimated value is equal to the
actual value) out of all flows in the DARPA traces. The results
of all six days are averaged together. For multiple hash function
results (H > 1), we use the Jenkins Hash with different seed
values.

125

TABLE I
CONSTANT TOTAL K = 16384 ENTRIES
H K Accuracy
1 | 16384 | 97.4238%
2 | 8192 | 97.9699%
4 | 4096 | 97.6100%
8 | 2048 | 95.6835%

ave

deviation K (FS row size) vs Average Deviation
1.2 70— y
1
0.8 B
0.6 {2
0.4 ==
H=B o s
0.2 > s
0 == iy
1024 2048 4096 8192 16384 32768

K (FS row size)

Fig. 8. Effect of FS row length (K) on average deviation.

When keeping K constant and increasing H, the accuracy im-
proves. For example, with H = 1, K = 2048, the accuracy is
84.3%. With H = 2 and K = 1024, the accuracy increases to
87.8%. The 3.4% difference equates to 5586 more precisely es-
timated flows of the total 164 276 flows. However, in most cases,
increasing K boosts accuracy more than increasing H. This is at-
tributed to hash function limitations, such as poor scattering or
lack of variability between different hash functions, or unavoid-
able collisions in small row size K (e.g., H = 8, K = 1024).

Table I represents an example of this behavior. The accuracy
improves when increasing the number of rows until H = 8§,
at which point the small K value limits the accuracy. Overall,
however, the FS data structure ably satisfies accuracy demands.
In Section V-B, we investigate how increasing H changes
throughput and FPGA performance.

Fig. 8 reports another measure of the effectiveness of feature
sketches, the average deviation of estimations from exact
per-flow results. Clearly, increasing H improves estimation of,
in this case, SYN-SYN/ACK values. This trend persists for
other network behavior measures. As in Fig. 5, the gap between
H = 1 and H = 2 is the largest. It shows that our datasets result
in mostly two collisions. This fact favors more balanced FS
configurations versus a one-row FS where collisions adversely
affect the accuracy.

B. FPGA Implementation of FEM

FEM was implemented on a Xilinx VirtexII xc2v1000 chip.
This member of the Virtex II family contains 5120 slices and
40 16-kb block random-access memory (RAM) modules. We
used Synplify Pro 7.2.1 for logic synthesis and the Xilinx ISE
5.2i suite for placement and routing. For our hash function,
the Jenkins Hash was extensively pipelined to operate at 270.6
MHz.

126 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 3, NO. 1, MARCH 2008

TABLE II
FEATURE SKETCH PLACE AND ROUTE
H K slices | Freq(MHz) | Throughput(Gbps)
1| 8192 | 628 167.5 18.42
2 | 4096 | 1263 202.6 22.29
4 | 2048 | 2543 216.6 23.82
1 | 16384 | 634 169.3 18.62
2 | 8192 | 1265 190.1 20.99
4 | 4096 | 2543 193.2 21.25
1 | 32768 | 643 113.6 12.50
2 | 16384 | 1274 135.4 14.89
4 | 8192 | 2543 152.3 16.76

Table II contains the performance and area metrics for FEM
implemented for edge routers. The performance results are sim-
ilar for host-level implementation since the additional logic in
the feature controller (FC) is not on the critical path of the FEM.
We test configurations for H = 1, 2, and 4. Throughput, clock
frequency, and slices are reported for three overall row sizes
K = 8192, 16384, and 32768. The throughput value is cal-
culated from the 5-tuple data {source IP, destination IP, source
port, destination port, protocol} and the 6-b flag field is used to
configure the FC.

It is clear that for a given memory size, increasing H increases
throughput because it reduces the memory size and, hence, re-
duces the access times. Similarly, for a constant H, reducing the
total memory amount (K) also increases the throughput. Among
the simulated configurations, the best throughput of 23.81 Gb/s
is achieved for H = 4 and K = 2048. However, note that this
configuration has a relatively low accuracy of 94.1%. Hence,
when one considers the “accuracy x throughput” product, the
best configuration is H = 4 and K = 4096, which can extract
information at 21.25 Gb/s.

Note that the increase in the number of slices is mostly a result
of using multiple hash functions in parallel. Replicating the hash
functions allows higher throughput and frequency at the expense
of area. If there are area constraints, however, one could use one
hash function implementation for multiple FS rows, providing
the values to each of them at consecutive cycles. This would
result in decreased throughput but also a reduced area require-
ment. Since the Jenkins Hash is pipelined, mapping a hash func-
tion to multiple rows would not introduce extra-long delays.

In conclusion, the simulations show that feature sketches are
effective data structures for network behavior characterization.
The simulation results demonstrate the gains in accuracy and
estimation ability of feature sketches. FPGAs take advantage of
multiple FS rows to satisfy gigabit throughput demands. Con-
sequently, feature sketches, the main components of FEM, are
attractive data structures for FPGAs to exploit parallelism.

C. Simulation Results for PCA

To measure the effectiveness of PCA, we use data sets from
the KDD Cup 1999 repository [19], used for the Third Inter-
national Knowledge Discovery and Data Mining Tools Com-
petition. Both training and testing data sets are provided. The
training data sets contain records of network connections la-
beled either as normal or attack. Each connection record is made
up of 41 different features related to the connection. The 41 fea-
tures are divided into three categories: basic features of TCP

100 J

Detection

Q0r
801

Percentage

40
301
20

False Alarm
x %
% X

*

2 3 4 5 6 7
Number of Principal Components (q)

o

Fig. 9. Detection and false alarm rate versus q.

connections, content features of the connection, and traffic fea-
tures which are derived using a 2-s time window to monitor the
relationships between connections. The traffic-level features en-
compass the same service and same host information, such as
the number of connections in the past 2 s that have the same des-
tination host as the current connection. These three categories
correspond to the levels of data abstraction outlined in Fig. 1.
We only use 28 of the 41 features in our study. Seven features
among the remainder were symbolic and the rest of the features
contained only zero values. Thus, the remainder of the features
have no impact on the behavior characteristic of the data set.

For these simulations, no distinctions were made between
different types of attacks. Either a connection record exhibited
normal properties or its behavior was noticeably different from
the behavior expected from PCA. In this way, PCA was applied
as an independent statistical mechanism for anomaly detection.

For the training phase of PCA, we use a provided 10% subset
data file. This subset was stripped of all attack connections
and chunks of 5 000 normal connections were extracted as
training data for PCA. We used five training files (kddc25,
kddc40, kddc55, kddc70, kddc75), each having 5 000 normal
connections. For the testing phase, we used a provided test file
which contained 10% of all testing data. In the first round of
tests, we averaged together the detection rates of five training
sets against the 10% testing set. The testing set had 311 029
connections out of which 250 436 were attack connections.
Even though the ratio of attack to normal connections is high,
Fig. 9 shows that PCA detects a high percentage of attacks
with a low false alarm rate. In this graph, the MajC pipeline
uses between one and seven principal components. With ¢ = 3,
PCA is already able to detect 92.2% of attacks, whereas with
q = 7, PCA can detect 99.2% of attacks. The results indicate
PCA effectively reduces the dimensionality of multivariate
problems. Our experiments contained 28 original variables but
only seven principal components are required to detect 99.2%
of the attacks. In other words, 21 less variables are needed to
classify any new data point which reduces the computational
cost significantly.

DAS et al.: FPGA-BASED NETWORK INTRUSION DETECTION ARCHITECTURE

TABLE III
VARIATION (%) VERSUS Q

filename| =2 | =3 [q¢=4 | q=5 | q=6 | q=7

kddc25 | 27.57| 37.54| 45.36| 59.41| 59.13| 64.42

kddc40 | 32.06| 40.85| 47.63| 53.75| 58.79| 63.72

kddc55 | 25.06| 33.43| 40.79| 47.48 | 53.75| 59.38

kddc70 | 31.52| 42.46| 52.22| 58.75| 65.13| 69.74

kddc75 | 33.28| 43.33| 51.86| 58.20| 64.07 | 68.09
TABLE IV

DETECTION AND FALSE ALARM RATES UTILIZING MinC AND MajC PIPELINES

False
Alarm

10.27%
5.22%
2.25%
10.52%
5.22%
2.28%
9.55%
12.50%
3.28%
2.12%
14.23%
6.39%
2.91%
5.21%
12.11%
4.18%
2.01%
11.21%
5.17%
1.95%
10.50%

Training | Test File q r Detection|
File (Major) | (Minor)

3 —

75.56%
98.19%
99.99%
91.94%
97.81%
99.95%
99.91%
62.60%
99.98%
99.90%
83.23%
98.50%
99.96%
98.74%
92.89%
99.50%
99.86%
96.21%
98.19%
99.96%
99.93%

kddc25 | testl

[S R

kddc70 | testB

[I B

kddc55 | testd

N W W W W] D W W W i e W W

I I S B B

Table III shows how the variation of the data depends on g,
the number of principal components. For example, with ¢ =
2, about 30% of the data variation is captured. Intuitively, in-
creasing the number of principal components places a tighter
bound on the amount of variation that PCA can account for.

Table IV shows the impact of adding the MinC pipeline to
PCA. The testing data sets in this table each have between 100
000 to 125 000 network connections randomly extracted from
the testing data. The training files are the same ones used in
Table II. Unlike the 80.5% attack distribution in the full testing
set, these data sets contain 30% to 35% attacks for our experi-
ments.

In addition to classifying network connections based on their
major principal component score (MajC), another score based
on the minor principal components (MinC) was calculated [31].
The number of major principal components (¢) accounts for the
majority of the data’s correlation structure while the minor prin-
cipal components (7) account for a small portion of the varia-
tion. This way, when attacks are detected, there is additional
information if attacks do not conform to the normal correlation
structure. For this study, we used minor components with eigen-
values less then 0.20.

In most cases, adding the MinC pipeline for network con-
nection boosts the detection rate and decreases the false alarm
rate. In the case of (¢,7) = (3, 5), the average detection rate in
Table IV is 99.92% and the average false alarm rate decreases to

127

2.13%. In some cases, (3, 5) performs better than (5, 5). This is
due to the random distribution of attacks and normal connec-
tions. By including more components, we may actually miss
an attack, because different configurations will have different
threshold values. Some normal attacks may seem like attacks
and vice-versa. However, in general, we see that increasing ¢
increases the detection rate.

For completeness, we also include the case of (¢,r) = (7,x)
indicating no MinC pipeline. This configuration increases the
detection rate but the average false alarm rate is 8.42%. So by
watching for anomalous behavior along two subsets of the prin-
cipal components, attacks can be recognized along two different
sections of the same correlation structure and thereby increase
the detection rate and decrease the false alarm rate.

D. FPGA Implementation of PCA

For the FPGA implementation, a single principal component
score pipeline was implemented to study the impacts of paral-
lelizing PCA. The target device XC2VP100 (speed grade: —5)
was chosen from the Xilinx Virtex II Pro family [38]. This is
one of the larger platforms of the family containing 444 18 x
18 block multipliers, 44 096 slices, and 444 18-kb block Selec-
tRAM+ blocks. The Virtex-II Pro platform FPGAs also provide
up to two PowerPC 405 32-b RISC integrated cores on a single
device.

Synplify Pro 7.2 was used for synthesis and Xilinx ISE 5.2i
for place and route statistics. To examine the area and perfor-
mance of PCA in real time, we implement the online portion
of the principal component score pipeline (PCSP) as shown in
Fig. 10. We implement PCSP having an input data X with four
and eight 32-b data fields. Also, we vary the number of principal
components to calculate a principal component score between
four and eight. This workload is feasible for a real-world imple-
mentation of PCA. In our simulations, each input data contained
28 fields for which we extracted 2 to 7 principal components.

There are many levels of parallelism to exploit in the
PSCP pipeline. They are depicted in the dashed line boxes in
Fig. 10. First of all, subtracting the mean vector from the
input data is done in parallel. If each data tuple has p fields
[X = (z1,%2,...,7,)], then p operations are performed in
parallel. The next phase for PCA is calculating the partial com-
ponent scores (parC). The element-by-element multiplication,
using fixed-point arithmetic, is performed in parallel. This op-
eration maps the new data along each principal component axis.
The first summation is specific to calculating the Mahalanobis
distance of the new data from the axes. This is accomplished
with an adder tree that scales with the depth of the adder
tree [logy(p)]. The result is then squared and divided by the
eigenvalue of the :th principal component. The next step is the
summation of all parC scores using another adder tree. This
scales logarithmically with the number of principal components
(q or r) designated. Finally, the principal component score is
compared with a threshold value (¢;; or t,,) determined in
offline processing. If both the MajC and MinC pipelines are
used, then both threshold values will be used. The MajC and
MinC pipelines have the exact same design as in Fig. 10. The
only difference in the two are the thresholds used (¢5; versus
tm), the number of principal components used (g versus).

128 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 3, NO. 1, MARCH 2008

Major Principal Component Pipeline

K P x-7 —@—
[
x o— = i
er >_| > / Split PC's

: T

Detection

/: Minor Principal Component Pipeline

Fig. 10. PCSP pipeline for FPGA.

TABLE V
PIPELINE STAGES BREAKDOWN [z = max(q, r)]

Operation # pipeline stages
a=x-17 1

b =¢;(x-7) 4

c=3 7 obi log, (p)

d=¢2 4

e=4 34

f=>1 o€ log, (2)

outlier = f < threshold | 1

Total # pipeline stages | 44 + log, (p) + logy (2)

Either or both of MajC and MinC pipelines detect intrusions
using one correlation model from the PCA. Attacks are detected
on two portions of the correlation structure. As the simulations
show, this method increases the detection rate and decreases the
false alarm rate. From a hardware perspective, the choice of ¢
and r affects the number of pipeline stages required. In Table V,
which shows the number of pipeline stages needed for each op-
eration in PCSP, max(q,r) can be substituted in for z in the
table.

It should be noted that any change in the MajC/MinC at-
tributes would require the FPGA to be updated. During these up-
dates, the operation of the FPGA will be halted. However, such
changes are extremely rare, and may take place once in a day,
month, or even year. Note that the eiegenvectors and eigenvalues
can be changed dynamically since their sizes do not change for
the given configuration.

E. FPGA Performance of PCA

Table VI shows the place and route statistics with Xilinx ISE
5.2i. We examine the throughput possible with different config-
urations of the PSCP pipeline. The number of principal com-
ponents (q) is the number of parallel parC’s to sum up on the

FPGA. The number of fields (p) is the number of 32-b fields
used to calculate the throughput of the PSCP pipeline. The #mult
field is the number of 18 x 18-b block multipliers used.

Parallelism is utilized at four levels: at subtracting the mean
vector, element by element multiplication, summation of ¢
parC’s, and the summation in calculating the parC score. The
summation tasks have the most impact on throughput since
those tasks take a variable amount of pipeline stages. Figs. 11
and 12 show the impact on FPGA throughput for varying the
number of principal components (¢) or varying the size of the
input data (p).

In Fig. 11, each line corresponds to data with eight, six, or
four fields of 32 b each (P8, P6, P4). The lines from top to bottom
are P8, then P6, and P4 at the bottom. First, it is clear that for any
q, increasing the workload (p) increases the throughput. For ex-
ample, with ¢ = 4, P8 has the highest throughput at 23.76 Gb/s,
then P6 with 16.87 Gb/s, and finally P4 with 10.47 Gb/s. This
is due to exploiting the parallelism in the summation to calcu-
late a parC score. The best throughput results are with q = 1;
however, this is not a good configuration in terms of detection
quality. A more relevant load would be with ¢ = 4, where P8
shows how to achieve the highest throughput. This is partially
attributed to full usage of adder trees in the pipeline. When an
adder tree is fully populated, registers are used when no op-
erations are taking place on a partial sum. Increasing q after
this point, decreases the link capacity as the buses involved in
the pipeline begin to be very wide and the cost of communica-
tion and coordination leverages the advantages of parallel de-
sign. Another characteristic to note in Fig. 11 is that, in gen-
eral, increasing ¢ for any constant workload p decreases the
throughput. This is explained by the adder tree at which the
parC scores are summed up. At this point, the 32-b values have
increased to 128-b values and the large amount of bandwidth

DAS et al.: FPGA-BASED NETWORK INTRUSION DETECTION ARCHITECTURE

129

TABLE VI
XILINX ISE 5.21 PLACE-AND-ROUTE STATISTICS (XC2VP100)
#q | p (#fields) | #mult. | slices | freq (MHz) | Data Pipeline Overall
Throughput Stages Latency
(Gbps) (us)
1 4 32 2605 134.59 17.23 47 .3492
1 6 40 2979 133.32 25.60 48 .3600
1 8 48 3225 136.07 34.83 48 3527
3 4 96 7679 67.55 8.65 48 7105
3 6 120 8669 73.96 14.20 49 6625
3 8 144 9275 78.77 20.17 49 .6221
4 4 128 10152 81.81 10.47 48 .5867
4 6 160 11450 87.88 16.87 49 .5576
4 8 192 12236 92.82 23.76 49 .5279
6 6 240 17140 67.57 12.97 49 7251
6 8 288 18286 75.83 19.41 50 .6593
8 8 384 | 24208 56.50 14.46 50 .8849
' ' ' ‘ ' ' stages in the second summation (see Table V) constant. The
351 Ps second summation is an intense operation from a bandwidth per-
spective. As the data travel through the pipeline, an initial 32-b
s0r value gets multiplied twice and becomes 128 b wide. We use this
& oo pipeline configuration to preserve the accuracy in fixed-point
o 25 arithmetic. The overall throughput increases moving from Q3
§ to Q4 but then decreases afterwards in Q6 and Q8. The reason
%’ 20r for this behavior is the large bandwidth of the second summa-
£ P tion.
15 When increasing the workload p, the throughput increases
1ol linearly. With ¢ = 1, increasing p from 4 to 8 increases the
throughput from 17.23 to 34.83 Gb/s. For ¢ = 4, the throughput
5)) increases from 10.47 to 23.76 Gb/s. We see that increasing p ex-

0 1 2 3 4 5 6 7 8 9
Number of Principal Components (q)
Fig. 11. Throughput versus g(p = k).

40

35 - Q1 i

25 Q4

Q3

20 ¢ Q6

15 Q8

Throughput (Gbps)

i\

10 |

0
5 6 7 8 9

Number of Fields (p)

w
IN

Fig. 12. Throughput versus p(¢ = k).

and coordination may inhibit the advantages of parallelization.
Also, the number of stages required to perform the summation
also varies by log,(q). For example, with ¢ = 1, there is no need
for an adder tree. For ¢ = 2 to ¢ = 4, two pipeline stages are
required.

In Fig. 12, the throughput is analyzed for a constant ¢ (QI,
Q3, Q4, Q6, Q8) to compute a principal component score (MajC
or MinC) and varying the workload with p ranging from four
to eight fields. In other words, we keep the number of pipeline

ploits the pure parallelism in subtracting the mean vector and the
element-by-element multiplication. In Fig. 11, those two levels
of utilizing parallelism are held constant and, thus, do not affect
the trend in throughput. Again, it seems that having an adder
tree accepting four inputs performs the best. Nonetheless, in
maximizing the precision with fixed-point operations on 32-b
data, this design still delivers high throughput levels that are pos-
sible to support more than 10-Gb/s link speeds. Our implemen-
tation handles feature processing with PCA and supports a data
throughput of 23.76 Gb/s for (¢, r) = (4, 8). These results indi-
cate that our design can be effectively used for network intrusion
detection using features as input. In addition, since it achieves a
high throughput level, it can be used for packet-by-packet pro-
cessing (e.g., with 40-B packets, the same configuration can
support up to 29.70 Gb/s).

Overall, our design for PCA exploits parallelism on mul-
tiple levels. First, MajC and MinC scores are calculated in par-
allel. Second, within each pipeline, element-by-element matrix
operations execute concurrently. The structure and layout of
FPGAs lend well to matrix operations. And third, subtracting
the mean from any new data tuple is performed outside the
pipeline. The results from this operation are distributed to the
MajC and MinC pipelines in a data parallel manner. Clearly,
FPGAs are well suited for our implementation of PCA. For a
representative workload, our implementation outputs at a link
speed of 23.76 Gb/s; enough to support gigabit line rates.

Note that we have not considered FPGA vulnerability in our
design. Although NIDS hardware is susceptible to external at-
tacks, FPGA boards are harder to attack than the rest of the
system, since they are programmed locally.

130 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 3, NO. 1, MARCH 2008

VI. RELATED WORK

Previous works show that many networking applications
have found their way into hardware implementations [39].
For example, FPGAs have been used in developing plat-
forms for the experimentation of active networks [12] for
services, such as detection of denial-of-service (DoS) attacks,
real-time load balancing for e-commerce servers, real-time
network-based speed recognition servers for v-commerce, etc.
Also, high-speed front-end filters and security-management
applications for ATM firewalls have found their way onto
FPGAs to reduce performance penalties at the IP level [23].
Also, the TCP/IP splitter [29] has been implemented as part of
the field-programmable port extender (FPX) project to perform
flow classification, checksums, and packet routing, but this
implementation is limited to 3-Gb/s monitoring. Prior research
has been conducted in this area to develop a flow-size monitor
similar to FEM [21]. However, the design was not capable
of being updated when connections were completed. This
limitation prevented achieving an accurate representation of the
network. Nguyen et al. have proposed a hardware architecture
for FPGAs that is effective in capturing network characteristics
and can handle gigabit throughput [28]. Other studies [14] agree
that per-flow methods will not suffice and propose intelligent
algorithms and multistage filters using multistage hash tables to
increase accuracy over Cisco’s NetFlow (which uses sampling
to characterize network traffic).

In anomaly detection, two prominent methods are used. The
first type is based on a set of rules or specifications of what is
regarded to as normal behavior while the second type learns the
behavior of a system under normal operation. The first relies
on manual intervention and is essentially a short extension of
signature detection-based IDSs. Rule-based intrusion detection
systems, such as Bro [8] or Snort [33], use known rules to iden-
tify known attacks, such as requests for nonexistent services or
virus attack signatures or malicious strings in packet payloads.
Anomaly detection systems, such as ALAD [22], SPADE [35],
and NIDES [3] compute statistical models for normal network
traffic and generate alarms when there are large differences from
the normal model. These methods apply statistical tests to de-
termine whether the observed activities greatly deviate from the
normal profile. These statistical-based schemes assume some
sort of multivariate distribution of data points. The Canberra
technique is another multivariate statistical metric for anomaly
detection. This method does not suffer from assumptions about
data distribution [13]. Yet this technique does not perform well
unless network attacks occur in bunches. In the case of port scan
malicious activity, which occurs over a long period of time, the
Canberra technique may not be as effective as it would be for
SYN flood and DoS attacks.

Many reconfigurable architectures have been implemented
for intrusion detection. Baker and Prasanna were able to imple-
ment a version of the Apriori [2] algorithm using systolic arrays
[6] and also look into efficient pattern matching [5] as a sig-
nature-based method. Sidhu and Prasanna also implemented a
pattern matching architecture for FPGAs [32]. Attig and Lock-
wood proposed a framework for rule processing on FPGAs [4].
Many packet processing architectures for FPGA have been im-
plemented. The scope of these applications ranges from string

matching, payload processing, packet classification, and TCP
flow processing [11], [30], [34].

The Karhunen—Lo’eve Transform, which uses the concepts of
PCA, has been mapped to FPGAs in the past [15] for use with
multispectral imagery suitable for remote-sensing applications.
However, this application does not decouple the eigenanalysis
step from the main PCSP pipeline which we accelerate for net-
work intrusion detection. Former works show that PCA has been
used as an outlier detection method in NIDSs [27].

Other systems employ outlier detection methods, such
as local outlier factor (LOF) [7], which is a density-based
approach, or kth nearest neighbor by calculating distances be-
tween connections. Aggarwal and Yu [1] studied the behavior
of projections from a data set to find outliers. Lazarevic, et al.
performed a survey on multiple outlier detection schemes, in-
cluding nearest neighbor and LOF on the 1998 DARPA data set
[9] and showed that LOF performs favorably as a density-based
approach [21]. The 1998 DARPA data set is composed of
tcpdump traces over four weeks of simulated network activity
including network attacks. Each connection record in the 1998
DARPA data set is comprised of many variables extracted using
tcpdump [36] and tcptrace [37] utilities.

Shyu, et al. [31] uses PCA on the KDD CUP 1999 data set
[19]. We use a similar PCA methodology as Shyu and, in our
tests, we verify that PCA is an effective outlier detection method
for network intrusion detection. PCA compares favorably to
LOF, nearest-neighbor, and the Canberra metrics and achieves
high detection rates with low false alarm rates. For any false
alarm rates, PCA is still detects up to 99% of attacks. However,
these studies did not consider hardware implementations of the
algorithms or their applicability to hardware implementation.

VII. CONCLUSION

Future generation network intrusion detection systems will
most likely employ both signature detection and anomaly de-
tection modules. Anomaly detection methods process a large
amount of data in order to recognize anomalous behavior or new
attacks which signature detection cannot. The previous work
mostly concentrated on accelerating signature detection tech-
niques. However, hardware implementations of anomaly detec-
tion methods have not been proposed. Some reasons include the
complexity and high computational cost associated with these
algorithms. In any case, current software methods fail to keep
up the high-link speeds. Signature detection can be performed
live, but live anomaly detection requires a comprehensive pic-
ture of the network environment. Our feature extraction module
provides this functionality using feature sketches, which map
well onto reconfigurable hardware. Many network behavior pa-
rameters can be monitored using our architecture by making
small modifications to the design. These characteristics include
flow size, number of open connections, number of unserviced
connection requests, etc. For the intrusion detection part, we
have used PCA as an effective way of outlier analysis. PCA is
particularly useful because of its ability to reduce data dimen-
sionality into a smaller set of independent variables from which
new data can be classified. We used a modified version of PCA

DAS et al.: FPGA-BASED NETWORK INTRUSION DETECTION ARCHITECTURE

to scan for strange behavior on two regions of a single corre-
lation structure. As a result, PCA can detect up to 99% of at-
tacks and only suffer a 1.95% false alarm rate for the KDD Cup
1999 data sets. A general hardware architecture was proposed
for FEM and the online portion of PCA and implemented on
the Xilinx Virtex-II family of FPGAs. In order to increase the
throughput of the whole system, pipelining and inherent paral-
lelism FPGAs were used extensively. Parallelism was exploited
for many element-by-element matrix operations and summa-
tions were achieved through adder trees. For a constant number
of principal components (g), increasing the data input size (p)
also increased the throughput of the system. Our architecture for
FEM shows a high percentage (97.61%) accuracy with a very
low estimation error (0.0365 packets), thus making the overall
throughput as high as 21.25 Gb/s for a 16-K entry FEM. The
PCA part of our design clocks at 92.82 MHz on a Virtex-1II Pro
and achieves 23.76-Gb/s data throughput and would be able to
support 29.07 Gb/s for 40-B packets.

ACKNOWLEDGMENT

The authors would like to thank Prof. S. Ogrenci Memik for
her helpful comments and suggestions pertaining to this work.

REFERENCES

[1] C. C. Aggarwal and P. S. Yu, “Outlier detection for high dimensional
data,” presented at the ACM SIGMOD Conf., Santa Barbara, CA, May
2001.

[2] R. Agrawal, T. Imielinski, and A. Swami, “Mining association rules
between sets of items in large databases,” in Proc. ACM SIGMOD Int.
Conf. Management Databases, 1993, pp. 207-216.

[3] D. Anderson, T. Lunt, H. Javits, A. Tamaru, and A. Valdes, “Detecting
unusual program behavior using the statistical components of NIDES,”
May 1995.

[4] M. E. Attig and J. Lockwood, “A framework for rule processing in
reconfigurable network systems,” presented at the IEEE Symp. Field-
Programmable Custom Computing Machines, Napa, CA, Apr. 2005.

[5] Z. K. Baker and V. K. Prasanna, “Time and area efficient pattern
matching on FPGAs,” presented at the ACM Int. Symp. Field-Pro-
grammable Gate Arrays (FPGA), Monterey, CA, 2004.

[6] Z. K. Baker and V. K. Prasanna, “Efficient hardware data mining with
the apriori algorithm on FPGAs,” presented at the IEEE Symp. Field
Programmable Custom Computing Machines, Napa, CA, 2005.

[71 M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF: Iden-
tifying density-based local outliers,” presented at the ACM SIGMOD
Conf., Dallas, TX, May 2000.

[8] Bro, Bro Intrusion Detection System 2002.

[9] DARPA Intrusion Detection Evaluation.
http://www .1l.mit.edu/IST/ideval. 1998

[10] S. Dharmapurikar, M. Attig, and J. W. Lockwood, “Design and imple-
mentation of a string matching system for network intrusion detection
using FPGA-based bloom filters” 2004.

[11] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. W. Lockwood,
“Deep packet inspection using parallel bloom filters,” presented at the
Symp. High Performance Interconnects, Stanford, CA, Aug. 2003.

[12] A. Dollas, D. Pnevmatikatos, N. Asianides, S. Kawadias, E. Sotiri-
ades, S. Zogopoulos, and K. Papademetriou, “Architecture and applica-
tions of PLATO, a reconfigurable active network platform,” presented
at the IEEE Symp. Field-Programmable Custom Computing Machines,
Rohnert Park, CA, 2001.

[13] S. M. Emran and N. Ye, “Robustness of Canberra metric in computer
intrusion detection,” presented at the IEEE Workshop on Information
Assurance and Security, West Point, NY, 2001, U.S. Military Academy.

[14] C. Estan and G. Varghese, “New directions in traffic measurement and
accounting,” presented at the ACM SIGCOMM Conf. Applications,
Technologies, Architectures, Protocols for Computer Communication,
Pittsburgh, PA, 2002.

[Online]. Available:

131

[15] M. Fleury, B. Self, and A. C. Downton, “A fine-grained parallel
pipelined Karhunen-Loeve transform,” presented at the Int. Parallel
and Distributed Processing Symp., Nice, France, Apr. 2003.

[16] B. Jenkins, Jenkins, Hash Functions and Block Ciphers.

[17] J. D. Jobson, Applied Multivariate Data Analysis, Volume I1: Categor-
ical and Multivariate Methods. New York: Springer-Verlag, 1992.

[18] 1. T. Jolliffe, Principal Component Analysis. New York: Springer-
Verlag, 2002.

[19] KDD Cup 1999 data. [Online]. Available: http://www.kdd.ics.uci.edu/
databases/kddcup99/kddcup-99.html. Aug. 1999

[20] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch based
change detection: Methods, evaluation, and applications,” presented at
the ACM SIGCOMM Internet Measurement Conf., Miami, FL, 2003.

[21] A.Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, and J. Srivastava, “A com-
parative study of anomaly detection schemes in network intrusion de-
tection,” presented at the STAM Conf. Data Mining, Minneapolis, MN,
May 2003.

[22] M. V. Mahoney and P. K. Chan, “Learning nonstationary models of
normal network traffic for detecting novel attacks,” presented at the
ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, AB,
Canada, Jul. 2002.

[23] J. McHenry, P. W. Dowd, F. A. Pellegrino, T. M. Carrozzi, and W. B.
Cocks, “An FPGA-based coprocessor for ATM firewalls,” presented at
the IEEE Symp. FCCM, Napa, CA, Apr. 1997.

[24] MIT Lincoln Laboratory, DARPA Intrusion Detection Evaluation.

[25] S. Muthukrishnan, Data streams: Algorithms and applications 2003.

[26] NetFilter/IPtables: Firewalling, NAT and Packet Mangling for Linux
24.

[27] D. Nguyen, A. Das, G. Memik, and A. Choudhary, “A reconfigurable
architecture for network intrusion detection using principal component
analysis,” presented at the IEEE Symp. Field-Programmable Custom
Computing Machines, Napa, CA, Apr. 2006.

[28] D. Nguyen, G. Memik, S. Memik, and A. Choudhary, “Real-time fea-
ture extraction for high speed networks,” presented at the Int. Conf.
Field Programmable Logic and Applications, Monterey, CA, 2005.

[29] D. V. Schuehler and J. W. Lockwood, “TCP splitter: A TCP/IP flow
monitor in reconfigurable hardware,” presented at the Hot Intercon-
nects 10 (Hotl-10), Stanford, CA, 2002.

[30] D. V. Schuehler, J. Moscola, and J. W. Lockwood, “Architecture for
a hardware-based, TCP/IP content-processing system,” IEEE Micro.,
vol. 24, no. 1, pp. 62-69, Jan./Feb. 2004.

[31] M. Shyu, S. Chen, K. Sarinnapakorn, and L. Chang, “A novel anomaly
detection scheme based on principal component classifier,” in Proc.
IEEE Foundations New Directions of Data Mining Work., in Conjunc-
tion With 3rd IEEE Int. Conf. Data Mining, 2003, pp. 172-179.

[32] R. Sidhu and V. Prasanna, “Fast regular expression matching using
FPGAs,” presented at the IEEE Symp. Field-Programmable Custom
Computing Machines, Rohnert Park, CA, Apr. 2001.

[33] SNORT, SNORT: The open source network intrusion detection system
2002.

[34] H. Song and J. W. Lockwood, “Efficient packet classification for net-
work intrusion detection using FPGA,” presented at the Int. Symp.
Field-Programmable Gate Arrays, Monterey, CA, Feb. 2005.

[35] SPADE, Stealthy Portscan Intrusion Correlation Engine 2002.

[36] Tcpdump Utility. [Online]. Available: http://www.tcpdump.org.

[37] Tcptrace Utility. [Online]. Available: http://www jarok.cs.ohiou.edu/
software/tcptrace/index.html.

[38] Xilinx Virtex-IIPro-Datasheet [Online]. Available: http://www.direct.
xilinx.com/bvdocs/publications/ds083.pdf.

[39] V. Yegneswaran, P. Barford, and J. Ullrich, “Internet intrusions: Global
characteristics and prevalence,” presented at the ACM SIGMETRICS,
San Diego, CA, 2003.

Abhishek Das (S’06) received the B.Tech. (Hons.)
degree in computer science and engineering from the
Indian Institute of Technology, Kharagpur, India, in
2005 and is currently pursuing the Ph.D. degree in
electrical engineering and computer science at North-
western University, Evanston, IL.

Currently, he is a Graduate Research Assistant in
the Center for Ultra Scale Computing and Informa-
tion Security at Northwestern University. In 2007,
he was with the Digital Enterprise Group (DEG) at
Intel Corporation, Hillsboro, OR, where he worked
on platform security of Intel’s business platforms. His research interests include
power-aware and reliable computer architecture, reconfigurable computing, and
hardware—software co-design.

132 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 3, NO. 1, MARCH 2008

David Nguyen received the B.S. degree in com-
puter engineering from Northwestern University,
Evanston, IL, in 2002 and the M.S. degree in com-
puter engineering from Northwestern University in
2005.

Currently, he is with SanDisk Corp. Milpitas, CA,
a consumer electronics storage solutions company
specializing in NAND flash-storage technology,
focusing on modeling and evaluating new system
controller features as well as NAND memory
features. Previously, he was with Sandia National
Laboratories, working in the network security group designing FPGA-based
network security solutions in 2005. His research interests are in applica-
tion-specific architectures with an emphasis on embedding security and driving
performance and reliability in NAND flash storage. He is the author of various
conference publications in reconfigurable network security.

Mr. Nguyen was the recipient of the Walter P. Murphy Fellowship in 2002.

Joseph Zambreno (M’02) received the B.S. degree
(Hons.) in computer engineering in 2001, the M.S.
degree in electrical and computer engineering in
2002, and the Ph.D. degree in electrical and com-
puter engineering from Northwestern University,
Evanston, IL, in 2006.

Currently, he is an Assistant Professor in the De-
partment of Electrical and Computer Engineering at
Towa State University, Ames, where he has been since
2006. His research interests include computer archi-
tecture, compilers, embedded systems, and hardware/
software co-design, with a focus on run-time reconfigurable architectures and
compiler techniques for software protection.

Dr. Zambreno was a recipient of a National Science Foundation Graduate
Research Fellowship, a Northwestern University Graduate School Fellowship,
a Walter P. Murphy Fellowship, and the Electrical Engineering and Computer
Science Department Best Dissertation Award for his Ph.D. dissertation “Com-
piler and Architectural Approaches to Software Protection and Security.”

Gokhan Memik (M’03) received the B.S. degree in
computer engineering from Bogazici University, Is-
tanbul, Turkey, in 1998 and the Ph.D. degree in elec-
trical engineering from the University of California
at Los Angeles (UCLA) in 2003.

Currently, he is the Wissner-Slivka Junior Chair
in the Electrical Engineering and Computer Science
Department of Northwestern University. He was with
Bimtek, a startup company that provided Internet so-
lutions, from 1997 to 2000, and BlueFront Defenses,
a startup company that designs hardware-based
network security solutions, from 2000 to 2002. His research interests are in
computer architecture with an emphasis on networking hardware design and
physical-aware microarchitectures. He is the author of two book chapters and
more than 70 journal and refereed conference publications in these areas. He is
also the co-author of NetBench and MineBench, two widely used benchmarking
suites for networking and data-mining applications, respectively.

Dr. Memik has been in the program committees of 20 workshops and con-
ferences, was the Co-Chair for the Advanced Networking and Communications
Hardware Workshop (ANCHOR) held in conjunction with ISCA between 2004
and 2006, and is the Program Co-Chair for the 2007 International Symposium
on Microarchitecture (MICRO). He was the recipient of the Department of En-
ergy CAREER Award in 2005, Searle Teaching Excellence Fellowship in 2004,
Henry Samueli Excellence in Teaching Award in 2002, and the Henry Samueli
Fellowship in 2001.

Alok Choudhary (F’05) received the B.E. (Hons.)
degree from the Birla Institute of Technology and
Science, Pilani, India, in 1982, the M.S. degree
from the University of Massachusetts, Amherst, in
1986, and the Ph.D. degree in electrical and com-
puter engineering from the University of Illinois,
Urbana-Champaign, in 1989.

From 1989 to 1996, he was on the faculty of the
Electrical and Computer Engineering Department
at Syracuse University, Syracuse, NY. Currently,
he has is a Professor of Electrical and Computer
Engineering at Northwestern University, Evanston, IL, where he also holds
an adjunct appointment with the Kellogg School of Management in the
Marketing and Technology Innovation Departments, Northwestern University.
His research interests are in high-performance computing and communication
systems, power-aware systems, information processing, and the design and
evaluation of architectures and software systems.

Prof. Choudhary’s career has been highlighted by many honors and awards,
including the National Science Foundation Presidential Young Investigator
Award, an IEEE Engineering Foundation award, an IBM Faculty Development
award, and an Intel Research Council Award.

