
Dynamic Directories: A Mechanism for Reducing 

On-Chip Interconnect Power in Multicores 
Abhishek Das*

1
, Matt Schuchhardt, Nikos Hardavellas, Gokhan Memik, and Alok Choudhary 

Electrical Engineering and Computer Science Department 

Northwestern University 

Evanston, IL USA 

*Datacenter and Connected Systems Group 

Intel Corporation 

Hillsboro, OR USA 

 
Abstract—On-chip interconnection networks consume a 

significant fraction of the chip’s power, and the rapidly 

increasing core counts in future technologies is going to further 

aggravate their impact on the chip’s overall power consumption. 

A large fraction of the traffic originates not from data messages 

exchanged between sharing cores, but from the communication 

between the cores and intermediate hardware structures (i.e., 

directories) for the purpose of maintaining coherence in the 

presence of conflicting updates. In this paper, we propose 

Dynamic Directories, a method allowing the directories to be 

placed arbitrarily in the chip by piggy-backing the virtual to 

physical address translation. This eliminates a large fraction of 

the on-chip interconnect traversals, hence reducing the power 

consumption. Through trace-driven and cycle-accurate 

simulation in a range of scientific and Map-Reduce applications, 

we show that our technique reduces the power and energy 

expended by the on-chip interconnect by up to 37% (16.4% on 

average) with negligible hardware overhead and a small 

improvement in performance (1.3% on average).21  

Keywords-On-chip networks; Non-uniform caches; Multicore 

architecture 

I.  INTRODUCTION 

Advances in process technology enable exponentially more 
cores on a single die with each new process generation, leading 
to a commensurate increase in cache sizes to supply all these 
cores with data. To combat the increasing on-chip wire delays 
as the core counts and cache sizes grow, future multicore 
architectures become distributed: the last-level on-chip cache 
(LLC) is divided into multiple cache slices, which are 
distributed across the die area along with the cores [5, 21]. To 
facilitate data transfers and communication among the cores, 
such processors employ elaborate on-chip interconnection 
networks. However, recent studies show that such on-chip 
networks consume between 20% to 36% of the power of a 
multicore chip [7, 10] and significantly raise the chip 
temperature [13] leading to hot spots, thermal emergencies, and 
degraded performance. As core counts continue to scale, the 
impact of the on-chip interconnect is expected to grow even 
higher in the future. 
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To minimize the power consumption of on-chip 
interconnects, recent research proposes circuit-level techniques 
to improve the power efficiency of the link circuitry and the 
router microarchitecture [17], dynamic voltage scaling [13] and 
power management [13, 14], and thermal-aware routing [15]. 
However, these prior works miss one crucial observation: a 
large fraction of the on-chip interconnect traffic stems from 
packets sent to enforce data coherence, rather than from 
packets absolutely required to facilitate data sharing. 

The coherence requirement is a consequence of 
performance optimizations for on-chip data. To allow faster 
data accesses, the distributed cache slices are typically treated 
as private caches to the nearby cores [2, 21], forming tiles with 
a core and a cache slice in each tile [1, 3, 5]. Private caches 
allow the replication of shared data, which, in turn, employ a 
directory-based coherence mechanism where a directory 
structure is typically address-interleaved among the tiles [5, 
21]. However, this address interleaving is oblivious to the data 
access and sharing patterns; it is often the case that a cache 
block maps to a directory in a tile physically located far away 
from the accessing cores. To share a cache block, the sharing 
cores need to traverse the on-chip interconnect multiple times 
to communicate with the directory, instead of communicating 
directly between them. These unnecessary network traversals 
increase traffic, consume power, and raise the operational 
temperature with detrimental consequences. 

In this paper, we propose Dynamic Directories, a 
distributed directory architecture that cooperates with the 
operating system to eliminate the need to place directory 
entries on a predetermined tile. We utilize this capability to 
place directory entries close to the most active requestors of the 
corresponding cache blocks, eliminating unnecessary network 
traversals and conserving energy and power. The principal 
contributions of this paper are: 

1. We observe that a large fraction of the on-chip 
interconnect traffic stems from the data-access-oblivious 
placement of directory entries. 

2. We propose Dynamic Directories, a mechanism to co-
locate directory entries with the most active requestors of 
the corresponding cache blocks, eliminating unnecessary 
network traversals and conserving energy and power. 

3. Through trace-driven and cycle-accurate simulation of 
large scale multicore processors running a range of 
scientific and Map-Reduce workloads, we show that 
Dynamic Directories reduce the interconnect energy and 
power by up to 37% (22% on average for the scientific 



workloads and 8% on average for Map-Reduce) with a 
1.4% performance improvement on average. 

The rest of the paper is organized as follows. Section II 
presents background and related work. Section III describes the 
details of our Dynamic Directory scheme, followed by the 
evaluation methodology in Section IV. The results of our 
evaluation are presented in Section V. Finally, we conclude the 
paper with a short summary in Section VI. 

II. BACKGROUND AND RELATED WORK 

A. Baseline Architecture 

This section describes the basics of our tiled architecture. 
Figure 1 shows each tile consisting of a processing core, a 
private split I/D first-level cache (L1), a slice of the second-
level cache (L2), and a slice of the distributed directory. To 
scale high core counts, the directory is distributed among the 
tiles in an address interleaved fashion, i.e., the address of a 
block modulo the number of tiles determines the directory 
location for this block. In this work we assume a full-map 
directory for the baseline and Dynamic Directory architectures, 
i.e., the directory has the capacity to hold coherence 
information for all the cache blocks across all the tiles in all 
cases. 

Address interleaving does not require a lookup to extract 
the directory location; all nodes can independently calculate it 
using only the address of the requested block. However, 
address-interleaved placement statically distributes the 
directories without regards to the location of the accessing 
cores, leading to unnecessary on-chip interconnect traversals. 
Figure 2 shows an example of the drawbacks of static address-
interleaved directory placement. Tile 7 requests a data block, 
currently owned by Tile 1, with its directory entry located at 
Tile 5 as determined by address interleaving. To access the 
block, Tile 7 first has to access the directory at Tile 5, which 
forwards the request to the owner Tile 1, which then sends the 
data to Tile 7 and an acknowledgement to the directory at Tile 
5. As the directory placement is oblivious to the location of the 
sharing cores, most on-chip data transfers will require similar 
3-hop messages. Ideally, if the directory is co-located with the 
sharer at Tile 1, it could eliminate two unnecessary network 
messages. Such placement is the goal of Dynamic Directories. 

Note that in an N-tile multicore system with address-
interleaved distributed directory, the probability of a particular 
tile holding the directory entry for a block is 1/N. This is the 
probability with which a requesting core can access a directory 

within its own tile. As the number of tiles increases, the 
probability of hitting a local directory diminishes. Thus, 
traditional address-interleaved directory placement becomes 
increasingly inefficient in future technologies, as it increases 
the on-chip interconnect power. 

B. Related Work 

Several previous proposals suggest new coherence 
mechanisms and cache architectures to reduce multicore cache 
energy and enhance performance. Ros et al., proposed Dico-
CMP [12] which extend cache tags to keep sharer information. 
Zebchuk et al. [20] proposes bloom filter mechanism for tag-
less cache coherency. Finally, Cuesta et al. [4] use protocol 
deactivation for private block accesses to reduce directory 
accesses. All these schemes are orthogonal to our scheme 
which allows directories to be located at any tile by cooperating 
with the OS.  

III. DYNAMIC DIRECTORIES SCHEME  

The Dynamic Directory mechanism reduces the 
unnecessary on-chip interconnect traffic by placing directory 
entries on tiles with cores that share the corresponding data. To 
achieve this, for every page, Dynamic Directories designate an 
owner tile of the directory entries for the blocks in that page, 
and store the owner ID in the page table. By utilizing the 
already existing virtual-to-physical address translation 
mechanism, Dynamic Directories propagate the directory 
owner location to all cores touching the page. There are two 
important aspects of this scheme: the classification of pages by 
the OS, and the directory placement and distribution among the 
cores. We describe these aspects in the following sections. 

A. Operating System Support 

To categorize pages and communicate their directory 
location to the cores, Dynamic Directories piggyback on the 
virtual-to-physical address translation mechanism. In modern 
systems, almost all L2 caches are physically accessed. Thus, 
for all data and instruction accesses, a core translates the virtual 
address to a physical one through the TLB before accessing L2. 
Upon a TLB miss (e.g., the first time a core accesses a page, or 
if the TLB entry has been evicted) the system locates the 
corresponding OS page table entry and loads the address 
translation into the TLB. 

We implement Dynamic Directories by slightly modifying 
this process. When a page is accessed for the first time ever by 
any of the cores, the page is declared private to the accessing 

 

P0 P1 

P4 P5 

P2 P3 

P6 P7 

P8 P9 P10 P11 

P12 P13 P14 P15 

P10 core 

I$ D$ 

L2 
Directory 

 
Figure 1. Baseline tiled architecture of a 16-core CMP. Each tile has a 

core, split I/D L1 caches, an L2 cache slice, and a directory slice. 
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Figure 2. Sequence of messages following a request by tile 7 for a block 

owned by tile 1, with its directory at tile 5. 



core. This information is stored in the page table. No directory 
entries need to be allocated for a private page, as there is no 
need to maintain coherence without sharers. 

If another core accesses the page, that core will also miss in 
its TLB as it has no valid entry. Upon the TLB miss, the OS (or 
the hardware page walk mechanism) discovers that this page is 
already accessed by a core, and reclassifies the page as shared. 
At the same time, the first accessor core becomes the owner of 
the page’s directory entries and the directory entries are 
allocated in its tile. The directory location is recorded in the 
page table, and communicated to the core through the TLB fill. 
Thus, any subsequent accessor of the page is also notified of 
the directory location for the blocks in the page. This 
mechanism guarantees that the directory is co-located with one 
of the sharers of the page, and at the same time provides a 
simple mechanism to locate the directory entries. 

To allocate the directory entries when the page is 
reclassified from private to shared, the system can either issue a 
purge request to the old owner of the page similar to [5], which 
shoots down the TLB entries for that page and flushes the 
corresponding cache blocks, or it can allocate directory entries 
for all the blocks in the page and declare the old owner’s cache 
as the owner of the blocks. In the latter case, requests for 
blocks that are not in the old owner’s cache can be easily 
detected and translated into off-chip misses. In either case, such 
events happen only once per shared page for the lifetime of the 
execution of the program, and it has been shown that they have 
a negligible performance impact [5]. Upon reclassifying a page 
from private to shared, the page table entry is placed in a 
special poison state that holds off all requests for TLB fills in a 
FIFO queue until the reclassification is complete, similar to [5]. 

We modeled the TLB structure with CACTI 6.5 and found 
that the energy overhead for accessing the TLB is negligible 

(0.7% per read access). Note that when a TLB entry is evicted, 
the system does not need to take additional actions. The page 
table is already up-to-date, and there is no need to flush the 
cache for that address. 

B. Directory Placement Mechanism 

Directory placement can be done at different granularities. 
For example, instead of designating one tile as the owner for 
the directory entries of all the blocks in the page, we could 
designate different owners for the directory entry of each block 
individually (or any granularity in between). Such a fine-grain 
placement would require considerable changes in the overall 
system operation. First, each TLB entry would have to store 
multiple directory owners (one per placement-grain). In turn, 
this would require a separate TLB trap for each sub-section of 
the page that is accessed to extract the directory location for it. 
Our results indicate that the system behaves well enough at the 
page granularity; thus, employing finer-grain techniques is 
unjustified. 

An alternative implementation of Dynamic Directories 
would be to reuse address bits for directory placement. This 
could be achieved by simply guiding the selection of physical 
addresses for each virtual page (i.e., some bits of the physical 
address will also designate the directory owner). However, 
such a technique would couple the memory allocation with the 
directory placement. As a result, forcing the use of specific 
address ranges could lead to address space fragmentation with 
detrimental consequences to performance, and may complicate 
other optimizations (e.g., page coloring for L1) that pose 
conflicting address translation requests. Overloading address 
bits could result in underutilizing the cache if the directory 
placement bits overlap with the cache index, or similarly could 
underutilize the DRAM banks, or the DRAM row buffer, or the 
memory channels. Dynamic Directories avoid all these 
problems by fully decoupling page allocation from directory 
placement.  

While pathological cases of uneven directory distribution 
are possible, we didn't see any in our workloads, and we don't 
expect to see any in commercial workloads either: their data are 
typically universally shared with finely interleaved accesses 
[5], so the pages should distribute evenly. It is important to 
note here that it is simple to turn off Dynamic Directories in 
pathological cases: one bit per page could indicate whether its 

TABLE II. ARCHITECTURAL CONFIGURATION 

CMP Size 16 cores 

Processing Cores UltraSPARC III ISA; 2GHz, in-order cores, 8-

stage pipeline, 4-way superscalar 

L1 Caches split I/D, 16KB 2-way set-associative, 2-cycle 

load-to-use, 3 ports, 

64-byte blocks, 32 MSHRs, 16-entry victim 

cache 

L2 NUCA Cache private 512KB per core, 16-way set-associative, 

14-cycle hit 

Main Memory 4 GB memory, 8KB pages, 45 ns access latency 

Memory Controllers one controller per 4 cores, round-robin page 

interleaving 

Interconnect 2D folded torus [16], 32-byte links, 1-cycle link 

latency, 2-cycle router, 1-flit control packets, 4-

flit data packets 

Cache Coherence 

Protocol 

Four-state MOSI modeled after Piranha [8] 

 

TABLE I. BENCHMARKS USED 

Benchmark Application Description 

S
ci

en
ti

fi
c 

 

NAS appbt 
Solves multiple independent systems 

of equations 

SPEC-CPU tomcatv 
Vectorized mesh generation; parallel 

version of 101.tomcatv from SPEC-FP 

Other 

Scientific 

dsmc 
Simulates the movement and collision 

of gas particles 

moldyn Molecular dynamics simulation 

unstructured 
Computational fluid dynamics 

application 

SPLASH-2 

[19]  

barnes 
Barnes-Hut hierarchical N-body 

simulation 

fmm 
Simulates particle interactions using 

the Adaptive Fast Multipole Method 

ocean 

Simulates large-scale ocean 

movements based on eddy and 

boundary currents 

watersp 
Simulates the interactions of a system 

of water molecules 

M
a

p
-R

e
d

u
ce

 

Phoenix 

[11] 

lreg 
Linear regression to find best fit line 

for a set of points 

hist 
Histogram plot over a bitmap image 

file 

kmeans 
K-Means clustering over random 

cluster points and cluster centers 

pca 
Principal component analysis over a 

2D-matrix 

smatch String matching in a large text file 

wcount Word count in a large text file 

 



directory entries are managed by Dynamic Directories or by a 
traditional method. 

IV. EVALUATION METHODOLOGY 

We motivate the deployment of Dynamic Directories 
through an analysis of the sharing patterns of two different 
categories of benchmark suites: Scientific and Map-Reduce, 
which are described in Table I. The scientific benchmark suite 
consists of a mixture of compute-intensive applications and 
computational kernels. Phoenix consists of data-intensive 
applications that use Map-Reduce. We analyze the data sharing 
patterns across our application suite by collecting execution 
traces of each workload using Flexus [6], a full-system cycle-
accurate simulator of multicores with non-uniform caches. The 
traces cover the entire execution of the Map phase for Phoenix 
applications (which constitutes the majority of execution time) 
and three complete iterations for the scientific applications. The 
workloads execute on a 16-core tiled CMP similar to Figure 1. 
The architectural parameters of the simulated CMP are 
depicted in Table II. 

A. Analysis of Access Patterns 

A core first searches for data in its local L2 cache. If it 
misses, then a directory access for the corresponding block 
follows. For each workload, Figure 3a shows the percentage of 
misses to the local L2 cache on blocks that are accessed by 
only one core during the execution of the program (1 shr, i.e., 
private blocks), accessed by few cores (2-4 shr), accessed by a 
large number of cores (5-15 shr), and blocks that are 
universally shared (16 shr). Each local L2 miss results in a 
directory access. 

As described in Section 3, placing the directory of private 
blocks in the same tile with the core accessing these blocks will 
eliminate two control messages for every local L2 miss. In 
contrast, conventional address-interleaved directory placement 
will co-locate the directory and the requestor only a small 
fraction of the time. For the cases where the accesses are to 
blocks with a few sharers (2-4), co-locating the directory with 
one of the requesting cores will significantly increase the 
probability that the directory and the requester are in the same 
tile, which will also lead to the elimination of two messages. 
As the number of sharers increases, this probability decreases; 
in the case of universal sharing (16 shr), conventional address-
interleaved directory placement will always co-locate the 
directory with one of the sharers, hence our proposed scheme 
will provide no additional benefit. 

Figure 3a shows that the scientific and Phoenix applications 
exhibit a significant fraction of directory accesses for blocks 
that are private or have a few sharers. Averaged across all 15 
workloads, 35% of the directory accesses are for private data 
and 33% of the accesses are for data shared among 2-4 cores. 
However, there are some exceptions to this behavior: pca has a 
large fraction of universally shared data. Nevertheless, our 
analysis suggests that in a large majority of applications, the 
most frequently accessed directories are either for private data 
or for data with a few sharers, motivating the use of Dynamic 
Directories. 

Dynamic Directories determine the placement of a directory 
at the page granularity (i.e., all the directory entries for the 
blocks within a page are located in the same tile). Hence, the 
sharing pattern at the page granularity determines the overall 
performance of our scheme. Similar to Figure 3a, Figure 3b 
shows the percentage of local L2 misses (i.e., directory 
accesses) on blocks that are within pages accessed by some 
number of cores during the execution of the workload. 
Averaged across all 15 applications, 23% of the accesses are on 
pages that are private and 13% of the accesses are on pages 
with 2-4 sharers. Thus, operating at page granularity does not 
introduce drastically more false sharing. 

V. EXPERIMENTAL RESULTS 

A. Simulation Framework 

We evaluate Dynamic Directories using the SimFlex 
multiprocessor sampling methodology [18]. Our samples are 
drawn over an entire parallel execution (Map phase) of the 
Phoenix workloads, and three iterations of the scientific 
applications. We launch measurements from checkpoints with 
warmed caches, branch predictors, TLBs, on-chip directories, 
and OS page tables, then warm queue and interconnect state for 
100,000 cycles prior to measuring performance for 200,000 
cycles. We use the aggregate number of user instructions 
committed per cycle as our performance metric, which is 
proportional to overall system throughput [18]. 

 
(a)  
 

 

(b) 

Figure 3. (a) Access sharing pattern based on the number of sharers per 

cache block. (b) Access sharing pattern based on the number of sharers per 

page. 



B. Power Model 

In this work we have modeled the on-chip interconnection 
power as opposed to the chip power dissipation. Hence, our 
power savings are relative to the base power dissipation in the 
interconnection network. The power-model consists of two 
parts: modeling on-chip interconnect energy dissipation and 
calculation of overall execution time. With this the power 
dissipation for a given application (A) can be defined as: 

A

A
A TimeExecution

EnergyctInterconne
Power

_
_

=
 

The on-chip interconnect of our base architecture is a 2D 
folded torus. To calculate energy dissipation in the 
interconnection fabric, we first calculate the total number of 
hops (H) for each transaction over the network. The total 
number of hops (H) of a transaction (T) is the sum of the hops 
of all flits transmitted for the transaction. In our base 
architecture, control packets are 1-flit wide whereas a data 
packet consists of 4 flits (Table II). Next, we multiply the hop 
count (H) by the energy dissipation per flit per hop (α) to 
calculate the overall hop energy for each transaction (T). This 
is summed up over all memory transactions (control and data) 
to calculate the total interconnect energy. 

∑=
TA HEnergy α.  

We do not need to estimate the lump energy constant (α), as 
we are interested in the relative power of Dynamic Directories 
over the baseline, so the constant (α) cancels out. 

C. Directory Placement Policy 

To evaluate the effectiveness of the directory placement 
policy, we compute the number of page accesses by the core 
that was the first ever to access the page (FirstAcc), and 
compare it against the accesses issued by the most frequent 
accessor for the same page (MaxAcc). From a power 
optimization standpoint and in the absence of directory 
migration, MaxAcc would be the ideal directory location for 
that page. As Figure 4 shows, allocating directory entries at the 
tile of the first accessor is a good approximation of the ideal 
scheme: the number of accesses issued by the first accessor is 
very close to the number of accesses issued by the most 
frequent accessor. 

D. Comparison with Alternative Schemes 

In addition to evaluating the power and performance impact 
of our scheme, we also compare against Virtual Hierarchies 

(VH), a directory migration technique proposed for server 
consolidation by Marty et al. [9]. The VH technique 
implements a two-level data coherence policy using a 
hypervisor. VH assigns specific home tiles for each memory 
region that have the same last bits in their block address; in 
other words, all accesses that miss a local tile are directed 
towards a home tile which is determined from a table indexed 
by the last bits of the block address. The home tile then 
sends/broadcasts the request to the appropriate owners. Since 
the home tile assignment policy used by the authors is not 
clearly indicated, we implement VH optimistically assuming 
perfect home tile placement, where the tile that makes the most 
accesses to a memory region is assigned to be the home tile for 
that specific region of the addresses. This way, any tile that 
accesses a block with the last few bits mapping to the memory 
region will be directing its request to the home tile for that 
region (upon a miss). 

E. Energy Savings 

Figure 5a presents the fraction of network energy saved by 
Dynamic Directories and VH respectively. For each 
application, the left and the middle bars indicate the energy 
savings attained by Dynamic Directories at the granularity of 
cache blocks and 8KB pages respectively. Dynamic Directories 
reduce the network energy by 20.4% and 16.1% on average for 
block- and page-granularity, respectively. As expected, the 
block granularity shows higher energy savings compared to the 
page granularity. However, as we describe in Section 5.2, such 
an implementation would complicate the design considerably 
(and will incur performance costs). The rightmost bar for each 
application presents the results for VH; VH saves 3.9% 
network energy on average. The power savings for both 

 
Figure 4. Effectiveness of the Dynamic Directories placement policy. 
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Figure 5. (a) Network energy savings with Dynamic Directories at cache-

block (DynDir-BLK) and 8K-page (DynDir-8k) granularities, and Virtual 

Hierarchies. (b) Speedup of Dynamic Directories over the baseline private 

NUCA architecture. 



Dynamic Directories and VH are largely achieved through a 
reduction of control messages in the network.  

In general, we note that the scientific applications attain 
higher energy savings compared to Phoenix. Phoenix 
applications exhibit a higher fraction of shared data accesses 
(Section 4). As a result, Dynamic Directories are more useful 
for the scientific workloads. In fact, we observe a strong 
correlation between the sharing distribution (Figure 3b) and the 
energy reduction (Figure 5a) for each of the studied 
applications. 

F. Performance Impact 

Figure 5b shows the overall speedup of Dynamic 
Directories compared to a baseline private NUCA architecture. 
Interestingly enough, we observe that Dynamic Directories 
slightly increase performance in 7 out of 15 applications, and 
decrease performance in 2. Dynamic Directories improve 
performance by up to 7% (Ocean), and by 1.3% on average, 
while the maximum performance slowdown is 1.3% (PCA). 
The performance is improved due to two reasons. First, 
Dynamic Directories reduce the number of network packets, 
which may eliminate congestion and hence reduce the overall 
latency of network operations. Second, data transfers (on-chip 
and off-chip) are faster because the access to a remote directory 
is eliminated in many cases. Because the working set is large, 
Dynamic Directories’ savings are realized mostly by off-chip 
memory accesses. As the off-chip memory access latency is 
already large, saving a small number of cycles does not 
improve the performance considerably. 

We attribute the slowdown exhibited by two of the 
applications (PCA and Wcount) to the fact that Dynamic 
Directories assign directories for a whole page to one tile. If it 
fails to reduce the number of network packets, this assignment 
can cause contention and hotspots. Especially for universally-
shared pages, it is likely that blocks are accessed by different 
cores in nearly consecutive cycles, causing contention in the 
directory tile, and increasing the directory’s response time. On 
average, we observe that the positive and negative forces 
cancel each other out, and Dynamic Directories have only a 
negligible overall performance impact. 

VI. CONCLUSION 

As processor manufacturers strive to deliver higher 
performance within the power and cooling constraints of 
modern chips, they struggle to reduce the power and energy 
consumption of the most insatiable hardware components. 
Recent research shows that on-chip interconnection networks 
consume 20% to 36% of a chip’s power, and their importance 
is expected to rise with future process technologies. In this 
paper, we observe that a large fraction of the on-chip 
interconnect traffic stems from placing directory entries on chip 
without regards to the data access and sharing patterns. Based 
on this observation, we propose Dynamic Directories, a 
distributed directory architecture that cooperates with the 
operating system to place directory entries close to the most 
active requestors of the corresponding cache blocks, 
eliminating unnecessary network traversals and conserving 
energy and power. The mechanisms we propose exploit already 

existing hardware and operating system structures and events, 
have negligible overhead, and are easy and practical to 
implement. Through trace-driven and cycle-accurate simulation 
on a range of scientific and Map-Reduce applications, we show 
that Dynamic Directories reduce the power and energy 
expended by the on-chip interconnect by up to 37% (16.4% on 
average) while attaining a small improvement in performance 
(1.3% on average). 
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