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Abstract

Modern Network Intrsuion Detection Systems (NIDSs)
use anomaly detection to capture malicious attacks. Since
such connections are described by large set of dimensions,
processing these huge amounts of network data becomes ex-
tremely slow. To solve this time-efficiency problem, statisti-
cal methods like Principal Component Analysis (PCA) can
be used to reduce the dimensionality of the network data. In
this paper, we design and implement an efficient FPGA ar-
chitecture for Principal Component Analysis to be used in
NIDSs. Moreover, using representative network intrusion
traces, we show that our architecture correctly classifies at-
tacks with detection rates exceeding 99.9% and false alarm
rates as low as 1.95%. Our implementation on a Xilinx
Virtex-1I Pro FPGA platform provides a core throughput of
up to 24.72 Gbps, clocking at a frequency of 96.56 MHz. !

1. Introduction

Network Intrusion Detection Systems (NIDSs) are used
to monitor suspicious network activity. In the wake of in-
creasing relevance of cyber-security, they are widely used
in current communication networks. NIDSs can be clas-
sified into two types: signature detection and anomaly or
outlier detection. Signature detection, or misuse detection,
searches for well-known patterns of attacks and intrusions
by scanning for pre-classified signatures in TCP/IP packets.
On the other hand, anomaly detection is used to capture be-
havior that deviates from the norm. These methods take as
input training data to build normal network behavior mod-
els. Alarms are raised when any activity deviates from the
normal model. The above models are generated using statis-
tical analysis, data mining algorithms, genetic algorithms,
etc.
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Anomaly detection can detect new intrusions while mis-
use detection may not. However, a drawback is that
anomaly detection methods suffer from false alarms. They
may raise alarms for normal activity (false positives) or not
sound alarms during attacks (false negatives). The need to
design solid anomaly detection methods is imperative. The
number of new attacks is increasing and variations of even
known attacks cannot be recognized by signature detection.

In this paper, we develop a novel architecture for Princi-
pal Component Analysis (PCA) that is used as an outlier de-
tection method. Principal component analysis is appealing
since it effectively reduces the dimensionality of the data
and therefore reduces the computational cost of analyzing
new data. In our experiments (described in Section 4), even
though each connection record has 41 features, we show
that PCA can effectively achieve over 99.9% detection rate
with only 7 principal components.

Reconfigurable hardware solutions are an attractive im-
plementation choice for anomaly detection due to their in-
herent parallelism, pipelining characteristics, and adaptabil-
ity. Hence, we implement our design on a Xilinx Virtex-II
Pro FPGA platform, taking advantage of this ample design
flexibility. Overall, our system is able to achieve a through-
put of up to 24.72 Gbps, which can satisfy the needs of Gi-
gabit connections. In addition to its use in network intrusion
detection, PCA is a commonly used statistical method and
hence our implementation can be widely utilized in various
domains.

The rest of the paper is organized as follows. Section 2
contains the related work regarding hardware implementa-
tion of NIDSs. Section 3 describes the concept of PCA and
illustrates in detail how it can be tailored for use in NIDS
applications. The implementation details, performance and
speedup reults of our FPGA architecture of PCA are shown
in Section 4. Finally the paper is concluded with a brief
summary in Section 5.



2. Related Work

Many reconfigurable architectures have been imple-
mented for intrusion detection. Baker et. al was able to
implement a version of the Apriori [3] algorithm using sys-
tolic arrays and also look into efficient pattern matching [2]
as a signature based method. Sidhu and Prasanna also im-
plemented a pattern matching architecture for FPGAs [11].
Attig et. al proposed a framework for rule processing on FP-
GAs [1]. Many packet processing architectures for FPGA
have been implemented. The scope of these applications
range from string matching, payload processing, packet
classification, and TCP flow processing [4, 12, 14], but do
not include anomaly detection.

The Karhunen Lo’eve Transform, which uses the con-
cepts of PCA, has been mapped to FPGAs in the past [5] for
use with multi-spectral imagery suitable for remote-sensing
applications. However, this application does not decouple
the eigenanalysis step from the main pipeline which we ac-
celerate for network intrusion detection.

Shyu et al. [13] uses PCA on the KDD CUP 1999 data
set [9]. We use a similar PCA methodology and in our tests,
we verify that PCA is an effective outlier detection method
for network intrusion detection. However, these studies did
not consider hardware implementations of the algorithms
or their applicability to hardware implementation. In sum-
mary, to the best of our knowledge, there has not been a
previous principal component analysis implementation on
FPGA hardware. We develop such an architecture and uti-
lize it for network intrusion detection.

3. Principal Component Analysis

PCA is used in a variety of domains to reduce the num-
ber of dimensions in input sets without losing the “infor-
mation” contained in them. At its core, PCA produces a
set of principal components, which are orthonormal eigen-
value/eigenvector pairs. In other words, it projects a new
set of axes which best suit the data. In our implementa-
tion, these set of axes represent the normal connection data.
Outlier detection occurs by mapping live network data onto
these ‘normal’ axes and calculating the distance from the
axes. If the distance is greater than a certain threshold, then
the connection is classified as an attack. This section intro-
duces PCA and describes how it is used in outlier detection.

3.1. PCA Methodology

Anomaly detection systems typically require more data
than is available at the packet level. Using preprocess-
ing and feature extraction methods, the data available for
anomaly detection is high dimensional in nature. The com-
putational cost of processing massive amounts of data in
real time is immense. Therefore applying Principal Com-
ponent Analysis as a data reduction tool while retaining the

important properties of the data is useful. PCA works to ex-
plain the variance-covariance structure of a set of variables
through a new set of orthonormal projection values which
are linear combinations of the original variables. Principal
components are particular linear combinations of p random
variables X, X», ... , X,. These variables have three im-
portant properties:

1. X4, Xo, ..., X, are uncorrelated,

2. X4, Xo, ..., X, are sorted in descending order, and

3. Xiotal = Z?:o X, the total variance is equal to the sum
of the individual variances.

These variables are found from eigenanalysis of the co-
variance or correlation matrix of the original variables X1,
Xo2, o s Xop [6,7].

Let the original data, in this case the training data, X be
an n x p data matrix of n observations with each observation
composed of p fields (or dimensions) X1, Xo,...,X).

Let R be a p x p correlation matrix of X1, X»,...,X,,.
If (M,e1), (A2, e2),...,(A\p,ep) are the p eigenvalue-
eigenvector pairs of the correlation matrix R, then the i
principal component is

e (x — X)
ein(z1 —Z1) + ein(2 — T2)

+otep(z,—Tp),i=1,2,...,p

Yi

where
AM>X > 2> ), >0,
e’ = €i1, €i,....¢;p is the i'" eigenvector,

X = (21,2, ..., xp) is the observed data along the variables
Xl’ X2’-~-’Xp,
X = (T1, T2, ..., Tp) is the sample mean vector of the obser-

vation data.

The principal components derived from the covariance
matrix are usually different from the principal components
generated from the correlation matrix. When some values
are much larger than others, then their corresponding eigen-
values have larger weights.

3.2. Distance Calculation

Calculating distance from a point is a fundamental op-
eration in outlier detection techniques. Methods include
nearest-neighbor, k;; nearest neighbor, Local Outlier Fac-
tor, etc. In general, the distance metric used is Euclidean
distance. This is the primary calculation in the nearest
neighbor approach. Let x = ( x1, 22, ... , zp) and y = (
Y1, Y2, ... » Yp ) be two p-dimensional observations. The
Euclidean distance is defined as:

d(x,y) =V (x—y)(x—y) )

In Equation 1, each feature carries the same weight in
calculating the Euclidean distance. However, when features
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Figure 1. Principal Component Analysis for Network Intrusion Detection

have a varied weight distribution or are measured on dif-
ferent scales, then the Euclidean distance is no longer ade-
quate. The distance metric needs to be modified to reflect
the distribution and importance of each field in the data.
One of these metrics is known as the Mahalanobis distance

PP(x,y) = (x—y)S ' (x—y) )

where S is the sample covariance matrix. In our work, we
replaced S~! with the correlation matrix, Rfl, since many
fields in the training set were measured on different scales
and ranges. Using the correlation matrix more effectively
represents the relationships between the data fields.

3.3. Applying PCA to Outlier Detection

In applying PCA, there are two main issues: how to in-
terpret the set of principal components, and how to calculate
the notion of distance.

First, each eigenvalue of a principal component corre-
sponds to the relative amount of variation it encompasses.
The larger the eigenvalue, the more significant its corre-
sponding projected eigenvector. Therefore, the principal
components are sorted from most to least significant. If a
new data item is projected along the upper set of the sig-
nificant principal components, it is likely that the data item
can be classified without projecting along all the principal
components.

Secondly, eigenvectors of the principal components rep-
resent axes which best suit a data sample. If the data sam-
ple is the training set of normal network connections, then
those axes are considered normal. Points which lie at a far
distance from these axes would exhibit abnormal behavior.
Using a threshold value (%), any network connection with
Mahalanobis distance greater than the threshold is consid-
ered an outlier, and hence in our case an attack.

Consider the sample principal components, y1, Y2, ... ,
yp of an observation x where:

Yi = e;(x—i),i = 1a27"'7p

The sum of squares of the partial principal component
scores is equal to the principal component score:

P 2 2 2

Y; Y1 Y5 Yp

i %2, 3
2T Tt &)

equates to the Mahalanobis distance of the observation X
from the mean of the normal sample data set [6].

3.4. PCA Framework

All anomaly detections require an offline training or
learning phase whether those methods are outlier detection,
statistical models, or association rule mining. Many times,
the mechanisms applied in the online and offline phases are
tightly coupled. Principal component analysis, however,
clearly separates the offline and online detection phases.
This property is an advantage for hardware implementation.
Figure 1 outlines the steps involved in PCA.

In the offline phase, labeled training data is taken as input
and a mean vector of the whole sample is computed. Ideally
these data sets are a snapshot of activity in a real network
environment. Secondly, a correlation matrix is computed
from the training data. A correlation matrix normalizes all
the data by calculating the standard deviation. Next, eigen-
analysis is performed on the correlation matrix to extract in-
dependent orthonormal eigenvalue/eigenvector pairs. These
pairs make up the set of principal components used in on-
line analysis. Lastly, the sets of principal components are
sorted by eigenvalue in descending order. The eigenvalue
is a relative measure of the variance of its corresponding
eigenvectors. Using PCA to extract the most significant
principal components is what makes it a dimensionality re-
ducing method because only a subset of the most important
principal components are needed to classify any new data.

To increase the detection rate of PCA, we use a modi-
fied version of PCA. In addition to using the most signifi-
cant principal components (q) to find intrusions, it is help-
ful to look for intrusions along a number of least signifi-
cant components (7) as well. The most significant principal



components are part of the major principal component score
(MajC) and the least significant components belong to cal-
culating a minor principal component score (MinC). MajC
is used to detect extreme deviations with large values on the
original features. These observations follow the correlation
structure of the sample data. However, some attacks may
not follow the same correlation model. MinC is used to de-
tect those attacks. As a result, two thresholds are needed to
detect attacks. If the principal components are sorted in de-
scending order, then ¢ is a subset of the highest values and r
is a subset of the smallest components. The MajC threshold
is denoted ¢ ; while the MinC threshold is referred to as t,,,.
An observation X is an attack if:

q Y3 p y_g
;f >ty or Z T >tm (4)

v i=p—r—+1 v

Rl V]

The online portion takes ¢ major principal components
and r minor principal components and maps online data into
the eigenspace of those principal components. There are
two parallel pipelines, one for calculating the major compo-
nent variability score (MajC) and one for the minor (MinC).
The simulations show that adding the MinC pipeline in-
creases the detection ability and decreases the false alarm
rate of using PCA for anomaly detection. For hardware de-
sign, the most computationally expensive portion of PCA is
performing eigenvector calculations and sorting. The pro-
cess of calculating eigenvectors is sequential and difficult to
parallelize. Fortunately, this task is part of the offline phase.
We are primarily concerned with accelerating online intru-
sion detection using PCA. For this segment, the most im-
portant bottleneck is computing the PC score. Fortunately,
this task can be parallelized as we describe in Section 4.

4. FPGA Implementation and Results

We implement our intrusion detection system on an
FPGA platform, because it offers the user ample flexibil-
ity while allowing for customized designs. VHDL is used
to synthesize the design, with Xilinx ISE 8.1 as the place-
and-route tool. The target device is the Xilinx XC2VP30
FPGA with -6 speed grade. Our results are based upon the
placed and routed design.

To examine the area and performance of PCA in real-
time, we implement the online portion of the principal com-
ponent score pipeline (PCSP) as shown in Figure 2. In our
simulations, the input X to the PCSP contains 32 8-bit data
fields (i.e. p = 32) for which we extracted upto 12 princi-
pal components. This workload is feasible for a real world
implementation of PCA.

There are many levels of parallelism to exploit in the
PSCP pipeline. They are depicted in the dashed line boxes
in Figure 2. First of all, subtracting the mean vector T from
the input data is done in parallel. If each data tuple has p

fields (X = (z1, z2,...,2p)), then p operations are performed
in parallel. The next phase for PCA is calculating the partial
component scores (parC). The element by element multipli-
cation, using fixed point arithmetic, is performed in paral-
lel. This operation maps the new data along each principal
component axis. The first summation is accomplished with
an adder tree that scales with the depth of the adder tree
(logy (p)). The result is then squared and divided by the
eigenvalue of the i* principal component. The next step is
the summation of all parC scores using another adder tree.
This scales logarithmical with the number of principal com-
ponents (q or r) designated. Lastly the principal component
score is compared with a threshold value (¢, or ¢,,,) deter-
mined in offline processing. The MajC and MinC pipelines
have the exact same design differing only in the threshold
values (¢ps versus ¢,,) and the number of principal compo-
nents used (q versus 7).

Operation # pipeline stages
a=x-7T 1

b=r¢;(x-7) 1

c=Y" b log, (p)

d=¢? 1

e= % 34

f=>17 e log, (2)

outlier = f < threshold | 1

Total # pipeline stages | 38 + log, (p) + log, (2)

Table 1. Pipeline Stages Breakdown [z =
max(q,r)]

Either or both of MajC and MinC pipelines detect intru-
sions using one correlation model from PCA. Attacks are
detected on two portions of the correlation structure. As the
simulations show, this method increases the detection rate
and decreases the false alarm rate. From a hardware per-
spective, the choice of ¢ and r affects the number of pipeline
stages required. In Table 1, we show the number of pipeline
stages needed for each operation in PCSP; here max(q,r)
can be substituted in for z in the table.

Table 2 shows the place and route statistics for the PCA
architecture. We examine the area required and throughput
possible with different configurations of the PCSP. The #
slices field gives the number of slices of FPGA used. The #
slices increase with increasing ¢ and r. If we use the most
significant principal components to calculate distance, PCA
helps us in finding the best estimate of distance with the
available area.

Figure 3 shows the speedup of PCA component over an
equivalent software implementation for different configua-
tions of PSCP. The software implementation was done on a
machine with 2.4 GHz AMD Opteron and 2 GByte RAM.
It is clear that for a given value of ¢, the speedup increases
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Figure 2. PCSP pipeline for FPGA

#q | #r | slices || freq (MHz) | Data Throughput (Gbps) | Pipeline Stages | Overall Latency (us)
4 0 | 2736 96.56 24.72 45 4660
4 1 | 3002 87.62 22.43 45 5136
4 2 | 3386 87.62 22.43 45 5136
8 0 | 5208 87.62 22.43 46 .5250
8 1 | 5444 87.62 22.43 46 .5250
8 2 | 5823 87.62 22.43 46 .5250
8 4 | 6774 87.62 22.43 46 .5250

Table 2. Variation of area/latency properties for different q and r values when p (# fields) = 32

as we increase 7, and vice versa. This is due to the fact that
we calculate the parC value of each principal component in
parallel and then use an adder tree to calculate the summa-
tion of parC values. Note that the the maximum speedup is
limited by the bandwidth of the underlying hardware, which
in our case is largely dependent on the I/O bandwidth of the
FPGA board. Moreover, our architecture has been com-
pared with a sequential software implementation. A paral-
lelized implementation would result in different speedups.

To measure the effectiveness of PCA we use both train-
ing and testing data sets from the KDD Cup 1999 repository
used for The Third International Knowledge Discovery and
Data Mining Tools Competition [9]. Even though there has
been a large amount of effort in developing efficient intru-
sion detection systems, there still does not exist a common
benchmarking methodology to test the success of such sys-
tems. Commonly, researchers revert to the ad-hoc methods
or intrusion traces [10]. Among these, KDD 1999 data set
is arguably the most commonly used one (the other impor-

tant trace is DARPA 1998, which is a predecessor of KDD
1999) [8]. Therefore, we focused on the KDD 1999 dataset
in our work.

Table 3 shows that principal component analysis detects
a high percentage of attacks with a low false alarm rate. The
testing data sets in this table each have between 100,000 to
125,000 network connections randomly extracted from the
testing data. We only use 32 of the 41 features in our ex-
periments. The remainder of the features were either sym-
bolic or contained only zero values. It is clear from the
results that adding the MinC pipeline for network connec-
tion boosts the detection rate and decreases the false alarm
rate. In the case of (q, 7)=(3, 5), the average detection rate
in Table 3 is 99.92% and the average false alarm rate de-
creases to 2.13%. For some input sets, (3, 5) performs better
than (5, 5). This is due to the random distribution of attacks
and normal connections. By including more components,
we may actually miss an attack, because different configu-
rations will have different threshold values. Some normal
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attacks may seem like attacks and vice versa. However in
general we see that increasing q or r increases the detection
rate.

5. Conclusions

In this paper, we have designed a hardware implementa-
tion of Principal Component Analysis (PCA) module used
in a Network Intrusion Detection System. PCA is par-
ticularly helpful in anomaly detection since it can reduce
the data dimensionality into a smaller set of independent
variables. Our FPGA implementation used hardware paral-
lelism and extensive pipelining, and can detect over 99.9%
of the network attacks with false alarm rates as low as
1.95% for KDD 1999 cup data sets. The results also show
that using our hardware architecture the system can achieve
a link speed of up to 24.72 Gbps and a clock frequency of
96.56 MHz.
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