
Mitigating the Effects of Process Variations: Architectural
Approaches for Improving Batch Performance

Abhishek Das, Serkan Ozdemir, Gokhan Memik, Joseph Zambreno and Alok Choudhary

Electrical Engineering and Computer Science Department,
Northwestern University. Evanston, IL

{ada829, soz463, memik, zambro1, choudhar}@eecs.northwestern.edu

ABSTRACT

As transistor feature sizes continue to shrink into the sub-90nm
range and beyond, the effects of process variations on critical
path delay have amplified. A common concept to remedy the
effects of variation is speed-binning, by which chips from a single
batch are rated by a discrete range of frequencies. In this paper,
we argue that under these conditions, architectural optimizations
should consider their effect on the “batch” of microprocessors
rather than aiming at increasing the performance of a single
processor. We first show that the critical paths are mostly
determined by the level 1 data caches on a set of manufactured
microprocessors. Then, we propose three new microarchitectural
techniques aimed at masking the effects of process variations on
level 1 caches. The first two techniques allow individual high-
latency cache lines spanning single or multiple sets to be disabled
at the post-manufacture testing stage. The third approach
introduces a small substitute cache associated with each cache
way to replicate the data elements stored in the high latency lines.
Our new schemes can be effectively used to boost up the overall
chip yield and also shift the chip binning distribution towards
higher frequencies. To make a quantitative comparison between
the different schemes, we first define a metric called batch-
performance that takes into account the chip yield and frequency
of chips in each bin. We then analyze our proposed schemes and
show that the resizing schemes and the substitute cache can
increase the batch-performance by as much as 5.8% and 11.6%,
respectively.

Keywords: Device Variability, Process Variations, Cache
Architecture, Fault-tolerance, Computer System Design.

1. INTRODUCTION
With the aggressive scaling of silicon technology,

parameter variations are expected to have significant impact
on the power, performance, and reliability of
microprocessors. As transistors are reduced in size, it
becomes harder to control variations in device parameters
such as channel length, gate width, oxide thickness, and
device threshold voltage. These fluctuations in the process
parameter distributions or simply process variations cause
increased variability in circuit performance and are likely to
be more dominant in sub-90 nm domain. Even in a
relatively mature technology like 130 nm, these variations
are known to result in as much as 30% decrease in
maximum frequency and 500% increase in leakage power
[8]. For newer technologies, these variations can be even
higher: 20-fold increases in leakage have been reported for
90nm [4]. Process variations consist of With-in-Die (WID)

and Inter-Die or Die-to-Die (D2D) parameter variations. As
a direct impact of this, a chip may under-perform or turn
out to be more leaky than a certain threshold and hence may
be eventually dropped resulting in effective yield loss. A
common practice to remedy the effects of process variations
is speed-binning (Figure 1). Speed-binning is usually
performed by testing each manufactured chip separately
over a range of frequency levels until it fails. As a result of
the inherent process variations, the different processors fall
into separate speed bins, where they are rated and marketed
differently. This process helps the chip manufacturer create
a complete product line from a single design.

Figure 1. Frequency binning in modern microprocessors.

In contrast to speed-binning, architectural changes made
for performance enhancements are generally analyzed by
considering its effects on high-level metrics such as
instructions-per-cycle (IPC) and/or cycle time. However,
because of the effects of process variations, different chips
can have different post-fabrication frequencies irrespective
of the changes made. Hence IPC and clock cycle are not
enough to judge the effects of an architectural modification
on the performance of a whole batch of chips. As a result,
we need to establish new metrics when the process
variations are considered. Chip yield is one obvious metric,
as the continuing downward scaling of transistor feature
sizes has made fabrication considerably more difficult and
expensive [14, 17, 15]. However, an approach that
optimizes solely for yield, would not take into account the
fact that CPUs concurrently manufactured using a single
process are routinely sold at different speed ratings and
prices. For example, from a manufacturer’s perspective,
having a 20% yield where the chips have 2.4 GHz
frequency may be more desirable than having a 50% yield
where the processors have 1.0 GHz maximum clock
frequency. In this paper, we propose a new metric called

Yield loss Bin 0 Bin 1 Bin 2 Yield loss

Frequency

Bin 3

of
chips

chips dropped
for being too

leaky

chips
dropped for
being too

slow

Bin 4

batch-performance (BP) to capture the effects of
architectural changes. Batch-performance corresponds to
the average performance of the batch of chips manufactured
using a given architecture, therefore captures the
distribution of chips as well as the chip yield. In Section
5.2, we provide a detailed explanation of this metric.

In addition to proposing this new metric, we investigate
the effects of cache resizing schemes on batch-performance
and then propose a novel scheme called Substitute Cache
(SC) that aim at improving overall binning distribution with
post-fabrication modifications. First, we study the impact of
two resizing schemes namely, One-Way Sizing (OWS) and
Multi-Way Sizing (MWS). OWS disables selected cache
word lines with critical or near-critical delay. By disabling
the high-latency word lines after manufacturing, this
approach improves the yield at the low end of the frequency
distribution, and also increases the likelihood that any valid
chip will be placed in a higher-frequency bin. MWS
extends this idea to a word line as it spans multiple sets in
the cache, working off the theory that a high-latency word
line in a single cache set would also likely be a critical path
in the other sets. In addition to these schemes, we also
propose the SC scheme, in which the level 1 (L1) cache is
augmented with a small substitute cache storing the most
critical cache words. With the help of minimal control
logic, the processor can fetch data from SC instead of the
main data array whenever a read/write access is made to
these critical words. Hence access latency is minimized
with no extra cache misses.

Figure 2. Delay distribution of each microarchitectural unit
for a set of 1100 processors. The cumulative distribution gives

the critical path of the chip.

The reason why we emphasize on caches is because L1
caches are likely to be the critical path under process
variations. Figure 2 illustrates the latency distributions of
various architectural units; for a set of 2000 simulated chips
(the details of the modeling framework are described in
Sections 2 and 3). The analysis reveals that 58.9% of the
critical paths lie in the L1 cache. Therefore, in this work,
we focus on the level 1 cache.

Although our techniques will have impact on various
design stages, such changes remain minimal. The cache
resizing schemes may impact the cycle per instruction (CPI)
of the processors, however, as we show in Section 4.1,
these effects are limited to 0.3% on average across

SPEC2000 applications. On the other hand, the proposed
schemes have significant impact on the binning distribution.
As we describe in Section 5, we simulate the effects of
process variations on yield and binning distribution using
SPICE. These results are fed into parameterized binning
models, which show that applying our OWS approach to
current processor architectures could lead to a 4.32%
increase in batch-performance. Similarly, MWS shows a
5.83% increase. For the SC technique, this increase can
reach 11.59%. These gains are achieved mostly through an
increase in the number of chips in the higher-frequency
bins. It should be noted that alternative approaches like
Error Correcting Codes (ECC) could not be used for our
purpose. The errors in timing violations generally cause
high number of bit flips, under which realistic ECC
schemes fail.

The remainder of this paper is organized as follows. In
the following section, we describe our methodology for
measuring the effect of process variations on a
representative processor architecture. Section 3 describes
how we model the binning. In Section 4, we present the
proposed cache architectures in detail. Experimental results
detailing the effects of our approaches on the binning
distribution with its implications on the overall batch
performance are presented in Section 5. Related work
pertaining to this area is presented in Section 6. Finally, the
paper is concluded in Section 7 with a brief summary.

2. PROCESS VARIATIONS AND MODELING
This section presents a description of the cache

architecture we use in this paper and describes how we
model process variations. Note that at this stage we confine
ourselves to analyzing level 1 caches only.

2.1 Processor Model
To model a processor core, we have taken into account

the classical 7-stage pipeline in Alpha-21364 (EV7)
architecture. The main critical components of our processor
are the Issue Queue, the Integer Execution Unit, the
Register File, and the L1 Data cache. All the above
components were modeled in SPICE using the 45nm BPTM
technology models [5]. The issue queue is based on that of
EV7 and has 20 entries. The register file is an 80-entry
structure with 4 read and 2 write ports. The integer
execution unit is modeled using the netlist generated after
synthesizing the corresponding component in the Sun
OpenSPARC [27]. Our L1 cache is a 32 KB 4-way set
associative cache, the model of which is based on the
architecture described by Amrutur and Horowitz [3]. Each
of the 4 ways of our cache is further divided into 4 banks.
Each bank has 128x128 cells or storage bits. Thus, each
bank has exactly 128 rows (i.e., lines) and can hold 2-KB of
data. The bitline delays are reduced by partitioning them
into two. To account for the effects of submicron
technologies on circuit behavior, we added coupling
capacitances at three places in the cache: between the lines
in the address bus from the driver, between parallel wires in

0

30

60

90

120

150

180

0 5 10 15 20
Latency

C
ou

nt

ALU
RegFile
IssueQ
L1cache
Cumulative

the decoder, and between bit-line and bit-line bar.
Furthermore, these lines as well as global and local word
lines are replaced by distributed RC ladders representing
the local interconnect wires inside the cache.
2.2 Simulating Process Variations

Process variations can be defined as statistical variations
in circuit parameters like gate-oxide thickness, channel
length, Random Doping Effects (RDE), etc., due to the
shrinking process geometries [4, 16]. As mentioned before
they mainly consist of D2D and WID variations. D2D
variation refers to the variation in process parameters across
dies and wafers, whereas WID variation is the variation in
device features within a single die, causing non-uniform
characteristics inside a chip. Independent of their types,
process variations generally fall into two categories:
spatially-correlated variations where devices close to each
other have a higher probability of observing a similar
variation level, and random variations causing random
differences between various devices within a die.

To measure the impact of process variations on the
delay and leakage of our cache model, we considered 5
different variation parameters. These are metal thickness
(T), inter-layer dielectric thickness (ILD or H), line-width
(W) on interconnects, gate length (Lgate), and threshold
voltage (Vt) for the MOS devices. We picked separate
values for T, H, W, Lgate, and Vt for the decoder, pre-charge
circuits, memory cell arrays, sense amplifiers, and output
drivers of each cache, using the variation limits given by
Nassif [15]. Similarly, various parameter values are
selected for the remaining components. The mean and 3σ
values for each source of variation are listed in Table 1.

Table 1. Nominal and 3σ variation values for each source
of process variations modeled

 Gate Length
(Lgate)

Threshold
Voltage (Vt)

Metal
Width (W)

Metal
Thickness (T)

ILD
Thickness (H)

Nominal
 Value 45 nm 220 mV 0.25µm 0.55µm 0.15µm

3σ -
Variation [%] ±10 ±18 ±33 ±33 ±35

Figure 3. Maps showing the variation of threshold voltage for
different range parameters: φ = 0.3 (left) and φ = 0.5 (right).

We model both systematic and random process
variations for our processor model. To take into account the
spatial correlation we use a range factor (φ) in the two
dimensional layout of the chip. Thus, each process
parameter can be expressed as a function of its mean (µ),
variation (σ), and the range (φ) values. If two points xi and
yi in a 2D plane are separated by a distance di, then the

spatial correlation factor between them can be described as
an inverse linear function involving φ and di. Note that
there is no correlation between two spatial points, which are
φ units or more apart. In addition to the spatially-correlated
variations, we also model random variations in the process
parameters. To model them, we chose process parameters
randomly from a uniform distribution. Spatially correlated
process variations are found to be the dominating factor
[10]. In addition, the contribution of the random variations
to the overall variations changes according to the parameter
[10]. Therefore, we have set lower levels of random
variations compared to systematic variations and generally
the amount of random variations do not exceed 30% of the
total variation. With this background, we have generated a
spatial map of various parameter values using the R
statistical tool [1]. Figure 3 shows the different threshold
voltage maps for φ set to 0.3 and 0.5. We must note that φ
value has a considerable impact on the randomness of the
parameter values. A higher φ means that the values are
highly correlated, whereas a low φ value results in a highly
random parameter value distribution. To extract the
parameter values corresponding to the different functional
units, we use the floorplan of Alpha EV7 processor. In
other words, the process variation values for the chip were
generated first, followed by the extraction of the values that
correspond to the particular positions of the studied
components from this modeled chip.

3. MODELING SPEED-BINNING
In order to effectively estimate the binning distribution

and demonstrate the effect the process variations on it, we
chose a set of 1100 chips for our analysis. Using the process
parameters described in Section 2, their delay and leakage
current values are obtained from SPICE simulations for the
cases when φ=0.3 and φ=0.5, which in turn are used to
determine the binning and yield loss. The cut-off for delay
has been set to be the sum of the mean and standard
deviation of the delay of the simulated chips (µ + σ),
whereas the leakage cut-off has been set to be three times
the mean leakage value. These limits are based on previous
studies [20].

Figure 4. Normalized leakage and delay distribution scatter
plot for simulated chips showing the binning for 5-bin

strategy. B0 through B4 represent the bin numbers from
lowest to highest frequency

0

2

4

6

8

10

12

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

Sigma variation in delay

No
rm

al
iz

ed
 le

ak
ag

e

Binning Range

B 4 B 3 B 2 B 1 B 0

Leakage Loss

Delay Loss

Most processor families are available in discrete
frequency intervals. For example, the frequency for the
Intel Pentium 4 processor family starts with 3.0 GHz and
reaches 3.8 GHz with equal intervals of 0.2 GHz [11].
Similarly, other commercial processors by AMD, Intel, and
Texas Instruments (TI) are marketed with 5 or 6 different
frequency ratings. Our binning methodology also assumes
equal binning intervals. This interval is chosen depending
on the number of bins to be generated. Regardless of the
number of bins, any chip that has a delay greater than the ‘µ
+ σ’ limit is referred to as a delay loss. Chips that satisfy
this criterion are used for binning into discrete bins starting
from the slowest to the fastest bin. Within each bin, the
chips that are lost due to excessive leakage (exceeding the
limit of 3x mean leakage) are referred to as the leakage loss.
Figure 4 shows the distribution of the normalized leakage
power consumption versus the distribution of processor
latencies for the base case (i.e., without any architectural
optimizations) for the 1100 simulated chips for φ value of
0.5. It also shows the binning for a strategy that generates 5
distinct bins. In this case, the chips that lie within ‘µ + σ’
and ‘µ + 0.5σ’ delay values are put into Bin0 (denoted by
B0 in Figure 4). These correspond to the slowest chips.
Similarly, chips with latencies within ‘µ + 0.5σ’ and ‘µ’ are
assigned to Bin1. The intervals for the remaining bins are
set following the same ‘0.5σ’ interval. Note that the highest
bin consists of the chips with delay values less than ‘µ – σ’.
Using a similar methodology, we model a strategy that
generates 6 bins. In this case, we reduce the binning interval
to ‘0.4σ’. Hence, Bin0 consists of chips that fall between ‘µ
+ σ’ and ‘µ + 0.6σ’, Bin1 consists of chips that fall between
‘µ + 0.6σ’ and ‘µ + 0.2σ’, and likewise.
4. PROPOSED CACHE ARCHITECTURES

In the first part of this section, we first describe cache
resizing schemes One-Way Sizing (OWS) and Multi-Way
Sizing (MWS). In Section 4.2, we describe a novel cache
architecture called Substitute Cache (SC), which masks the
effects of process variations by including extra storage in
the cache. These schemes aim at increasing the number of
chips in the higher frequency bins and hence improve the
average performance of the manufactured chips.

4.1 Cache Resizing Schemes
The main idea in these schemes is to analyze the design

of the cache, determine the word lines that can cause a
delay violation and then modify the cache architecture such
that these word lines may be disabled. In the core of these
ideas lies one common characteristic: if a path is found to
be a critical path in a cache architecture, it will be the
critical path in a large number of chips. In general, when
process variations are considered, it is hard to determine a
single path that is the critical path. Therefore, each path is
associated with a probability of being a critical path. If this
probability is X%, the corresponding path is expected to be
the critical path in X% of the manufactured chips. In our
cache model, we have observed that these probabilities can
be very high. Particularly, our analysis of the cache

architecture and the process variation simulations (see
Section 2) reveal that one particular word line is the critical
path in 67.3% of the 1100 caches we have studied. The
reasons for this phenomenon are two-fold. First, cache
architectures are regular; most paths exhibit the same
characteristics. Second, because of spatial correlation in
process variations, all the word lines are affected similarly.
The consequence of this phenomenon is crucial: if we select
a word line to be the critical path during the design process,
it will be the critical path in many chips and hence disabling
it may reduce the overall cache delay.

4.1.1 One-Way Sizing (OWS)
As the name suggests, One-Way Sizing (OWS) refers to

the cache resizing scheme when resizing is restricted to a
single cache way. The main idea in OWS is to disable word
lines that are likely to generate cache delay violations or
cause the chip to be placed in the lower bins. Take for
example the 4-way set associative cache described in
Section 2.1. If due to the effects of process variations the
incurred extra delay makes the cache very slow, then
turning off the delay-intensive line will be helpful in
decreasing the cache latency. As a result, the chip can be
placed in a higher-frequency bin. Our OWS scheme is
based on this concept. Particularly, we first analyze the
cache architecture and determine the critical paths. Each
critical or near-critical path corresponds to a word line.
Then, we select n such paths and change their word line
select bit logic to allow the designer to disable them (i.e.,
turn them off). The number of cache rows or word lines to
be disabled depends on the cost and overhead the designer
is willing to allow. For example, OWS-4 refers to disabling
the 4 most critical word lines of the cache. Note that, to
simplify the process of disabling, we do not allow each line
to be turned on/off individually. On the contrary, all the
selected lines are enabled/disabled together. To clarify the
process, consider the process of developing the OWS-8
scheme. For OWS-8, we first analyze the delay of all word
lines in a cache way. In our cache architecture, there are
128 such lines; hence, we order them according to their
expected latency. Then, we choose the topmost 8 and
change their word line select logic. This can be performed
by adding an additional input to the AND gates that activate
the local word line select signals. This additional input is
used for the enable signal. The enable signals for all the 8
word lines are connected to the same “resize enable” signal.
After the manufacturing, using this enable signal, the
designer can choose to disable all the selected 8-rows. If
one of these word lines is the critical path, the total delay of
the cache will be reduced. As a result, the chip may be
placed in a higher bin.

Note that, in OWS, each cache way has a separate
“resize enable” signal. As a result, the speed-binning
process after the manufacturing needs to be changed to test
the overall delay while each of these signals is asserted.
Although it is possible to control each enable signal (and
hence the cache way) individually, the number of possible

combinations can be large. In addition, if several word lines
corresponding to the same index are disabled, the
associativity for those indexes may decrease, potentially
resulting in a large number of cache misses. Therefore, we
allow at most one set of disabled words lines. In other
words, only selected word lines from one cache way can be
disabled at a given time. To implement this, each “resize
enable” signal will be asserted sequentially during the
testing stage, and one signal will be allowed to remain high
if this changes the outcome of the speed-binning.

4.1.2 Multi-Way Sizing (MWS)
OWS aims to locate the likely critical paths in a cache

and embed enable/disable signals for them, so that these
word lines can be disabled. However, if a word line is the
critical path in one of the cache ways, it is very likely to be
the critical path in the remaining ways. As a result, although
OWS can disable one of these paths, the remaining ones
will still be enabled and cause a long cache access delay.
Another drawback of the OWS scheme is the increased
complexity due to the “resize enable” signals in each way.
The Multi-Way Sizing (MWS) technique aims at attacking
these limitations. Particularly, MWS disables all the chosen
critical word lines from all the cache ways instead of
disabling the word lines in a single cache way as done in
OWS. To explain the idea, consider that word line N is
determined to be the most likely critical path. Then, similar
to the OWS scheme, MWS will change the AND gates on
word line N to allow it to be disabled. However, unlike
OWS, MWS will allow the designer to disable all word line
N’s from all the cache ways simultaneously. If the word
line N is the critical path in all the cache ways, this will
eliminate the longest path in each way and cause a
significant reduction in the cache delay. Because of the
spatial correlation of process variations, the probability that
the same index remains the critical path in different cache
ways is high; in these cases MWS improves upon OWS.

Figure 5. The mapping of indexes to word lines for MWS.
Straddled blocks show the lines disabled by the “resize

enable” signal.

A second advantage of the MWS scheme is the
reduction in the number of enable/disable signals. Since the
decision of enabling/disabling is done for the whole cache,
the cache will implement a single “resize enable” signal as

opposed to one for each way in the case of OWS. This will
reduce the complexity of the control circuitry.

For MWS, similar to OWS, the designer has to select
the number of rows that will implement the enable/disable
signals. If 4 word lines from each cache way are connected
to the “resize enable” signal, the scheme is called MWS-4.
Note that, this corresponds to disabling 16 word lines
simultaneously for a 4-way cache.

A problem with the MWS technique is that when a
cache line is disabled across all the ways, that index loses
its address space. For the above-presented example, if we
decide to disable all the word lines N, then any addresses
with the corresponding index will miss in the cache. To
tackle this issue, the orientations of the decoder lines are
changed in such a manner that no identical indexes are
disabled in two different ways. To be precise, we modify
the mapping of indexes to word lines in each cache way
such that each index can be disabled at most once. Figure 5
presents the change of the mapping for a 4-way, 32-entry
cache (8-entries for each way). The initial word lines to be
disabled are found using the delay analysis. In our example,
these are lines 2 and 5. Then, for the remaining cache ways,
the rows to be disabled are found by considering the lowest
row number that has not yet been placed into a disabled
line. In our example, these are lines 0 and 1 for cache way
1, lines 3 and 4 for cache way 2, and lines 6 and 7 for cache
way 3. The remaining rows are mapped to remaining index
numbers in order. As a result of this reordering, when the
cache is resized, the associativity for each index reduces by
at most one. Particularly, for our example architecture, each
index has exactly 3 enabled rows, hence, the cache miss
rate will be identical to that of a 3-way associative cache
with 24 total entries.

Figure 6. Post-decoder implementation for changing the index
to word-line mapping.

This remapping of the indexes to word lines can be
implemented by changing the post-decoders that are
implemented in high-performance caches. Particularly, the
decoders in modern caches work in two stages: a pre-
decode and a post-decode stage. The pre-decode stage
generates a number of signals and broadcasts them to each
word line, where the post-decoders are waiting for certain
combinations. The new mapping of the indexes to word
lines can be implemented by simply changing these
combinations. The post-decoder implementations for the
cache architecture shown in Figure 5 are depicted in Figure
6. The signals A0, A0', A1, A1', A2, and A2' are produced
by the pre-decoder. The select logic (i.e., transistors on the
word line select logic) for each word line corresponds to the
post-decoder stage. As shown in the figure, by simply

WL 0 000

A0

WL 1 001

WL 2 010

WL 3 011

A0'A1 A1'A2 A2'

WL 4 100

WL 5 101

WL 6 110

WL 7 111

Clk

WL 2 010

WL 3 011

WL 0 000

WL 4 100

WL 5 101

WL 1 001

WL 6 110

WL 7 111

A2 A2' A1 A1' A0 A0' Clk A0'A0A1'A1A2'A2

WL 0 000

WL 1 001

WL 3 011

WL 2 010

WL 5 101

WL 4 100

WL 6 110

WL 7 111

Clk A0'A0A1'A1A2'A2

WL 0 000

WL 1 001

WL 6 110

WL 2 010

WL 3 011

WL 7 111

WL 4 100

WL 5 101

Clk

line 0
line 1
line 2
line 3
line 4
line 5
line 6
line 7

line 2
line 3
line 0
line 4
line 5
line 1
line 6
line 7

line 0
line 1
line 3
line 2
line 5
line 4
line 6
line 7

line 0
line 1
line 6
line 2
line 3
line 7
line 4
line 5

Resize Enable

Mapping of rows
for way 0

Mapping of rows
for way 1

Mapping of rows
for way 2

Mapping of rows
for way 3

reordering the locations of these transistors, we achieve the
desired reordering. Note that this change does not incur any
penalty on the delay of the cache.

4.1.3 Complexity of Resizing
Both our MWS and OWS schemes have design

overheads. Note that we implement the enable signals on
the critical paths of the cache; hence any change, due to our
schemes, increases the cache delay. The particular
modification we make to the cache is to change the 2-input
AND gate that enables the word line select signal to a 3-
input AND gate. We found that the delay overhead for this
extra circuitry is 0.75% on average. This increase in delay
has an impact on the binning of the chips. However, we
must note this overhead is not applicable to MWS when
these lines are disabled. To be precise, when the selected
word lines are disabled, they will never be used throughout
the lifetime of the chip. Therefore, the delays of these lines
are not considered during the critical path analysis, hence
the overall delay is not affected for MWS. For OWS, on the
other hand, this increase in delay may have an impact on
the cache delay. Since OWS disables word lines in only one
of the cache ways, the delay of the word lines in the
remaining cache ways may increase, which in turn will
increase the critical path delay.

4.1.4 Effects of MWS and OWS on Cycles-per-
Instruction (CPI)

Since we are performing cache resizing, our schemes
may increase cache miss rates, which will result in
performance degradation. In this section, we analyze how
our schemes change the cycles-per-instruction (CPI) for the
SPEC2000 applications. SimpleScalar 3.0 [23] simulator is
used to measure the effects of our proposed cache resizing
techniques. The necessary modifications have been
implemented on the base simulator to model selective cache
replay, the buses between caches, and port contention on
caches. Changes were also made to SimpleScalar to
implement the cache resizing schemes, which disable
certain indexes from corresponding cache ways. The base
processor is a 4-way processor with an issue queue of 128
entries and a ROB of 256 entries. The simulated processor
has disjoint level 1 data and instruction caches: level 1 data
cache is a 32 KB, 4-way set associative cache with block
size of 64-bytes and latency of 4 cycles, and the level 1
instruction cache is a 32 KB 4-way set associative cache
with block size of 32-bytes and latency of 2 cycles. The
level 2 cache is a unified 1024 KB, 8-way set associative
are cache with 128 byte block size and 20 cycle latency.
The memory access delay is set to 350 cycles. We have
performed our simulations using 11 floating point and 12
integer benchmarks from the SPEC2000 benchmarking
suite [26].

Figure 7 and Figure 8 present the increase in CPI for the
MWS and OWS schemes, respectively. The average
increase in the CPI is 0.08% for MWS-8 and 0.02% for
OWS-8 schemes. Among the studied applications, only two
exhibit an increase in CPI exceeding 0.3%: gzip and apsi.

For these applications, the increases in CPI for the MWS-8
scheme are 0.55% and 0.32%, respectively.

Figure 7. Performance results for OWS schemes for the
SPEC2000 applications

Figure 8. Performance results of MWS schemes for the

SPEC2000 applications.

Note that the schemes disable sporadic indexes, and
hence different indexes have varying associativities,
creating heterogeneous cache architecture. Therefore, the
increase in the CPI for these two applications is directly
caused by their usage of the disabled indexes.

4.2 Substitute Cache
The main downside of the schemes discussed in

previous section is the performance impact of resizing the
cache in terms of increased CPI levels. Our third scheme
named Substitute Cache (SC) attacks this problem. The idea
in the SC is to augment each cache way with extra storage
that will be used if certain locations in the main cache
exhibit long latencies. In such cases, the data will be read
from the substitute cache, and chips from the lower
frequency bins can now be placed in higher frequency bins,
because the high latency lines are not used. Moreover, some
of the chips, which could have failed due to high access
latencies, will be added to the overall yield.

The anatomy of the proposed cache architecture is
shown in Figure 9. For the sake of clarity we detail the use
of SC on a single cache way; however, each cache way has
a similar SC associated with it. SC is similar to a fully-
associative cache structure. In our study, its size is either 4
or 8 entries. As opposed to the L1 cache, SC has smaller
line sizes. Particularly, it consists of only 64-bit entries,
because it stores words of the main data array. Instead of
storing the whole cache line, only the critical word in the

0

0.1

0.2

0.3

0.4

luc
as

mgri
d

pa
rse

r

wupw
ise

mes
a

tw
olf vp

r

pe
rlb

mk
ap

plu ap
si gc

c art

am
mp

eq
ua

ke
cra

fty eo
n

mcf
vo

rte
x

ga
p

bz
ip2 gz

ip

six
tra

ck
ga

lgel
Mea

n

Benchmarks

In
cr

ea
se

 in
 C

PI
 [%

]

MWS-4 MWS-8 0.55

0

0.1

0.2

0.3

0.4

luc
as

mgri
d

pa
rse

r

wupw
ise

mes
a

tw
olf vp

r

pe
rlb

mk
ap

plu ap
si

gc
c art

am
mp

eq
ua

ke
cra

fty eo
n

mcf
vo

rte
x

ga
p

bz
ip2 gz

ip

six
tra

ck
ga

lgel

Mea
n

Benchmarks

In
cr

ea
se

 in
 C

P
I [

%
]

OWS-4 OWS-8

line is stored in the SC, because our study reveals that the
words with maximum access latency are always the ones
that are furthest from the decoder. As a result, by just
storing these words, we obtain the same improvement in
cache frequency while keeping the SC size small. However,
if necessary, words in other locations can also be placed
into the SC. An SC is divided into 2 components: an index
table and a data array. Note that the SC uses the column
multiplexers and output drivers of the main array.
Whenever a cache word is placed in the data array of the
SC, index bits of its address, which is equal to the sum of
the row and column addresses (10 bits in our architecture)
are placed in the index table of the SC. For example, if we
decide to place the word with index value 0x044 to the SC,
we will have an entry in the index table with value 0x044.
Note that this word would have resided in the row with
index 0x8 in the main array with the column address being
equal to 0x4. In case of a data access, the index table is
checked with the index bits of the address. A match implies
that the data will be read from the SC instead of the main
array. Specifically, if the index of the address is found in
the SC index table, the contents of the corresponding data
array row are forwarded to the column multiplexers of the
main array. The additional control logic shown in Figure 9
will then set the column multiplexers correctly. If the index
of the address does not match any index table entries, the
main array will be accessed. Even if there is a match in the
index table, the access can still miss in the cache if the
corresponding tag does not match. However, the tag
structure is not affected by the addition of SC. If there is a
miss due to tag mismatch, we will still output the data,
which will be ignored because the tag will indicate the
miss. Overall, the tag match/mismatch is independent of the
SC design. We only care whether the corresponding parts of
the address match with the values stored in the index table
and decide whether to supply the data from the main array
or the SC.

Now let us consider a typical read operation in the main
array. The row address part of the index field selects the
appropriate row in the data array through the row decoder.
The appropriate word is then chosen by the column
multiplexers with the help of the column address bits of the
index. One of the key observations is the difference
between the time taken by each of these steps. Particularly,
the inputs to the column multiplexers are available at the
same time the decoder is accessed. However, the signals
provided to the decoders will traverse through the decoder
logic, the word lines, the memory cell, the bit lines, and the
sense amplifiers before it will reach the column
multiplexers. We utilize this imbalance to operate our SC
structure. As soon as the address is available, we start
accessing the SC index table. If they record a hit, we
change the input to the column multiplexers to 0. In other
words, we forward the output of the SC as the output of the
cache. If, on the other hand, there is no match in the index
table, we will set the column multiplexer to the original
position indicated by the column address. If the time to

check the index table in the SC is less than the delay of the
data array (the sum of the delays of the decoder, word line,
memory cell, bit line, and sense amplifier), then, this
operation does not cause any delay overhead on the cache,
because while the data array is accessed, we would have
already determined the hit/miss in the SC index table.
Using CACTI 3.2 [22] we found the total access latency for
a 8-entry SC to be 0.28 nanoseconds; whereas the latency
for the main array (one set of the 32KB 4-way set
associative cache) is 0.40 nanoseconds. Therefore, the SC
access can be completely overlapped with the main array
access and will not cause any increase in the cache access
latency. The only change in the latency of the main array is
due to the changes in the column multiplexers. Because of
the data forwarding from the SC, the column multiplexers
(straddled in Figure 9) have an additional input coming
from the SC data array. The analysis with our SPICE model
reveals that this overhead is 0.34% of the overall cache
access latency. We include this overhead during our
binning analysis in Section 5.1. Note that there is no
performance loss in terms of CPI for the SC scheme, as
the effective cache size remains unchanged.

Figure 9. One cache way of a 32KB 4-way set associative L1
cache augmented with Substitute Cache. Column muxes are

shaded as they select data from 9 inputs as opposed to 8
inputs.

Similar to a read operation, a write access (either a store
operation or write operation during the replacement of a
cache line) selects the appropriate index using the row and
column addresses and updates the selected word in the
cache way selected by the Way-Select Logic. In case of the
SC, the index table is checked for the index of the data
word to be written. If there is a match, the new data word is
loaded in the data array of the SC.

One of the key components during the operation of SC
is the index table. After the chip is manufactured, a Built-
In-Self-Test (BIST) is performed where n most critical
cache indices are chosen and placed in the SC index table.
Note that, these values are extracted only once during the
lifetime of the chip and never changed. Therefore, they can
be extracted by the BIST and become part of the booting

R
ow

 D
ec

od
er

Tag Index Off

Substitute
Cache L1 Data Banks

64-bit Data Word

DataSelect
(Index match)

Row
Address

Column
Address

0

10

Data
Select
Mux

7

3

1019 3

Data array

128 x
128 b

16

128

64

16 b 16 b 16 b 16 b
Index
Table

10

4

process, where they are read from a permanent location and
placed into the index table every time the processor boots.
We must mention that we neglect any impact of process
variations on the SC since it is much smaller than the L1
cache and its latency is significantly lower, hence it is
unlikely to become the critical component. Finally, it
should be noted that the size of the SC dictates the area and
power overhead of this approach. With the help of SPICE
and CACTI, we found the total power overhead to be 6.0%
and 6.5% of the main array for a 4- and 8-entry SC,
respectively. The area of the cache increases by 3.7% and
4.1% for the 4- and 8-entry SC, respectively.

Overall SC scheme chooses the lines dynamically so it
is not based on any variation model, as compared to cache
resizing schemes rely strongly on the systematic variations.

5. EXPERIMENTAL RESULTS
In this section, we describe the analysis of our proposed

schemes. Section 5.1 describes how our schemes change the
outcome of the speed-binning, whereas Section 5.2
illustrates the gain in batch-performance.

5.1 Binning Results
This section presents the binning results based on the

binning methodology described in Section 3. Since our
binning schemes are divided into two categories, namely 5-
bin and 6-bin strategies, we describe them separately. For
both 5-bin and 6-bin strategies, the proposed MWS, OWS,
and SC schemes are applied and the resulting changes in the
number of chips in each bin are found. To find how the
chips are placed into different bins, we first analyze our
architecture with the base cache and find the mean and
standard deviation of the 1100 cache delays. Then, based on
these values, the boundaries for each bin are set. We then
apply the MWS, OWS, and SC to find the new delays for
each chip and find the corresponding bin distribution.

Figure 10 and Figure 11 show the binning results for 5-
bin strategy for MWS and OWS, respectively. The results
for the 6-bin strategy were similar and hence are not
presented in detail; in the next section we present the
overall impact of the schemes for the 6-bin strategy. To
understand the figures, consider the leftmost bar for each
bin. This bar corresponds to the number of chips in that bin
for the base cache architecture. The bars next to it (i.e., the
ones in the middle) represent the number of chips in that
bin when MWS-4 or OWS-4 schemes are applied. The right
bars represent the number of chips in the corresponding bin
for the MWS-8 or OWS-8 schemes. In general, we see that
our schemes can successfully increase the number of chips
in the higher bins. For example, in the 5-bin strategy, the
number of chips in the highest bin (Bin4) is increased by
8.2% using MWS-8. Figure 12 depicts the binning results
for the SC scheme. In case of the SC, the chip yield is
catapulted to a larger extent (14.4%). Like MWS and OWS,
it also shows a sharp increase in the chip of the last bin for
the 5-bin strategy.

It is misleading to draw any conclusion about high-
frequency chip yield by simply considering the chips in the

highest bin. The gain in the highest bins for all the 3
schemes are accompanied by a reduction in the number of
chips in the lower bins. However, we must note that the
total yield is increased using these schemes. Specifically,
the total yield increases by 4.5%, 3.5% and 9.7% using the
MWS-8, OWS-8, and SC-8 schemes, respectively (for
φ=0.5). Although there are no additional chips lost due to
leakage for the resizing schemes, the SC is associated with
a power overhead. The SC-4 and SC-8 schemes cause an
additional 9.1% and 11.7% loss of chips, respectively. In
spite of that, the total yield increases for SC, because it
converts a high number of delay loss chips into yield. Even
though the total number of chips increases, the schemes
tend to move a larger number of chips towards the higher
bins. As a result, the chip counts in the lower bins tend to
decrease.

One of the reasons for the significant change of yield
gain from MWS-4 to MWS-8, OWS-4 to OWS-8, and SC-4
and SC-8 is the fixed cost of implementing the schemes. As
described in Section 4.1, implementing the resizing scheme
incurs a circuit delay of 0.75% over the base cache
architecture. When the “resize enable” signal is off, this
overhead in delay is added to the critical path, whereas
when it is on it does not affect the critical delay in the
MWS scheme. Therefore, MWS has a more profound
impact on the speed-binning outcome. In case of OWS, the
overhead may cause other cache ways to become the
critical path, limiting its overall impact. For SC, this
overhead is even lower and hence it achieves better binning
results than MWS.

5.2 Impact on Batch-Performance
To summarize the effect of the new binning

distribution and to judge its merits, we define a new metric
called batch performance (BP). Batch performance
corresponds to the total performance of the chips obtained
from a batch of microprocessors. If there are k different
frequency bins having frequency ratings f1, f2,…, fk with
each of them having yields n1, n2,…,nk ; the total batch-
performance is given by:

BP = Σk (fk x nk) (1)
This BP formula can be is extended in two ways. First, if an
architectural scheme has an impact on the CPI, the change
can be captured by incorporating it into the equation.
Specifically, if a scheme achieves an IPC of i1, i2,…, ik for
each bin, the new batch performance will be calculated by:

BP = Σk (fk x nk x ik) (2)
Finally, to find the average performance, this sum is

divided to the number of manufactured chips. We have
calculated the average BP for the base cache architecture
and our proposed schemes based on Equation 2. Table 2
presents the change in BP with our architectural schemes.

As mentioned in Section 4.1, the MWS and OWS
schemes introduce some performance overhead in terms of
increase in CPI. This means that for these schemes, the
effective IPC goes down and thus changes the batch

performance. For example, increase in CPI by 0.08% for
MWS-8 changes the effective IPC to 0.999 for the same
(assuming base IPC to be 1). Thus the BP for MWS are
calculated using the changed IPC. The SC scheme,
however, has no effect on the IPC and thus the
enhancement in binning distribution is directly converted
into batch performance improvement.

Figure 10. Binning with 5-bin strategy for MWS.

Figure 11. Binning with 5-bin strategy for OWS.

Figure 12. Binning with 5-bin strategy for SC

Table 2. Increase in batch performance for various
cache-architectures

An important point to note here is the relative batch
performance improvement of OWS-8 with respect to
MWS-4. Although the latter shuts off 16 lines compared to
8 lines in OWS-8, MWS-4 has a lower BP improvement
than OWS-8. The main reason behind this is the high
spatial correlation within a particular cache way, which
restricts the criticality of a cache to a single way. In other
words, we observe that different cache paths are affected in
a similar manner under process variations. As a result of the
correlation of process variations, these changes result in one
cache way containing several critical or near-critical paths.
Therefore, OWS becomes a more effective scheme than
MWS, as shutting off lines within a way is preferable to
spanning them across multiple ways. Overall, SC-8 scheme
performs the best, improving the batch performance by
11.5% and 11.2% for the 5-bin and 6-bin strategies under
φ=0.5, respectively. For φ=0.3, the improvement for the
same binning strategies are 10.5% and 11.6%, respectively.

We must note that from a manufacturer’s perspective,
there is a strong motivation to increase the batch
performance. Assuming a simplistic case, a higher BP can
translate into higher revenue: the high-frequency chips are
sold for a higher price, hence an increase in BP will result
in revenue increase. Overall, since the manufactured chips
will have varying performance levels, it is logical to
consider the overall performance of the chips rather than
the possible enhancements to a single processor.

6. RELATED WORK
Mitigating the effects of process variations has long

been the objective of circuit designers. Previous works
show that several circuit-level techniques have been
adopted to counter the negative effects of process variations
[4, 6, 9, 18, 21, 24]. The inter-die and intra-die process
variations and their effects on circuit leakage is studied in
detail by Rao et al. [19]. In another work, Rao et al. [20]
analyze the impact of process variations on circuit leakage
and proposed methods to reduce them. Most of these
techniques focus on analyzing the design statistically or by
using static timing analysis, and then modifying the parts of
the circuits that are most susceptible to variations. Many
gate-sizing strategies have been used on the critical or near
critical regions of the circuit in order to reduce the effective
latency [7, 28].

Performance binning has also been adopted as means of
increasing yield [4, 8, 21]. Datta et al. [8] propose a novel
approach of changing the effective speed-binning by gate
sizing, and thus increasing the profit. Unlike our schemes,
most of their analyses are based on statistical estimations of
yield, and the optimizations are for high-level synthesis.
Kim et al. [12] have studied the effects of cache size on
leakage and analyzed the trade off on access time when
multiple threshold voltages are used for level 1 and level 2
caches.

In the architecture domain, system-level techniques are
studied to prevent yield loss under process variations [17].
Sohi’s work show that cache redundancy can be used to

Increase in Batch Performance with
respect to the base architecture [%]
MWS OWS SC

Range
(ϕ)

Binning
Strategy

4 8 4 8 4 8
5-bin 1.35 5.71 0.59 4.09 5.88 11.50

0.5
6-bin 1.30 5.83 0.71 4.21 5.58 11.19

5-bin 1.95 5.26 1.35 4.08 6.18 10.51
0.3

6-bin 2.10 5.60 0.98 4.32 6.10 11.59

0

50

100

150

200

250

300

bin0 bin1 bin2 bin3 bin4

BASE
OWS4
OWS8

0

50

100

150

200

250

300

bin0 bin1 bin2 bin3 bin4

BASE
MWS4
MWS8

0

50

100

150

200

250

300

350

bin0 bin1 bin2 bin3 bin4

BASE
SC4
SC8

prevent yield loss [25]. At a high level, SC resembles their
cache duplication scheme. However, there are several
differences in our implementation. Most importantly, rather
than implementing a separate structure, we extend the main
cache and hence can utilize many structures of it. Ozdemir
et al. [17] present yield-aware microarchitectural schemes
specially in cache domain, that improved the overall yield
to as much as 97%. Liang et al. [13] target at mitigating the
effects of process variation by introducing variable latency
regular structures like register files. Besides, Agarwal et al.
[2] propose a scheme that prevents yield loss due to failures
in the SRAM cells of the cache. Their approach is mostly
based on Built-In Self-Test (BIST) circuitry and the cache
optimizations are concentrated towards yield maximization.
In comparison to the abovementioned works, our efforts
have been directed towards effective binning and batch
performance optimization for set associative caches. In
addition, all the previous techniques listed above have
performance implications, i.e., different chips from the
same family may exhibit varying performance levels.
However, our SC scheme provides constant IPC for all the
chips in a family.

7. CONCLUSIONS
Efficient binning under process variations is becoming a

significant challenge for chip manufacturers. A
considerable amount of effort is being made to save chips
from excessive delay and market them properly after speed-
binning. In this paper, we studied two cache architectures,
which are aimed at maximizing the batch-performance of a
particular line of chips manufactured with the same process
technology. Our first scheme, One-Way Sizing (OWS),
tries to resize a single way of a set associative cache for
reducing cache latencies and hence improving the
frequency. The second approach called Multi-Way Sizing
(MWS) extends this concept to multiple cache ways. The
extra circuitry needed for these schemes is very small and
the newly resized cache causes minimal reduction in the
instruction-per-cycle (IPC) rates: 0.02% and 0.08% on
average for the most aggressive OWS and MWS,
respectively. As an alternative to these resizing schemes,
we propose a novel technique called Substitute Cache (SC),
which has no performance overhead and works by storing
critical words of the data array in a separate structure.
Overall, the most aggressive OWS, MWS and SC schemes
increase the average batch performance by 4.2%, 5.8% and
11.6%, respectively.

REFERENCES
[1] "The R Project for Statistical Computing", Available at

http://www.r-project.org/
[2] A. Agarwal, B. C. Paul, H. Mahmoodi, A. Datta, and K. Roy,

"A Process-Tolerant Cache Architecture for Improved Yield
in Nanoscale Technologies," IEEE Trans. Very Large Scale
Integrated Systems, vol. 13, pp. 27-38, 2005.

[3] B. S. Amrutur and M. A. Horowitz, "Speed and Power
Scaling of SRAM's," IEEE Trans. on Solid-State Circuits,
vol. 35, pp. 175-185, Feb. 2000.

[4] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi,
and V. De, "Parameter Variations and Impact on Circuits and
Microarchitectures," In Proc. of Proc. of the Design
Automation Conference, 2003.

[5] Y. Cao, T. Sato, D. Sylvester, M. Orshansky, and C. Hu,
"New Paradigm of Predictive MOSFET and Interconnect
Modeling for Early Circuit Design," In Proc. of Custom
Integrated Circuits Conference, 2000.

[6] S. H. Choi, B. C. Paul, and K. Roy, "Novel Sizing Algorithm
for Yield Improvement Under Process Variation in
Nanometer Technology," in Proc. of the Design Automation
Conference. San Diego, CA, 2004, pp. 454-459.

[7] O. Coudert, "Gate Sizing: A General Purpose Optimization
Approach," In Proc. of European Design and Test
Conference, 1996.

[8] A. Datta, S. Bhunia, J. H. Choi, S. Mukhopadhyay, and K.
Roy, "Speed Binning Aware Design Methodology to
Improve Profit Under Parameter Variations," In Proc. of
Proc. of the Conf. on Asia South Pacific Design Automation,
2006.

[9] A. Datta, S. Bhunia, S. Mukhopadhyay, and K. Roy, "Delay
Modeling and Statistical Design of Pipelined Circuit Under
Process Variation," IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, 2006.

[10] P. Friedberg, Y. Cao, J. Cain, R. Wang, J. Rabaey, and C.
Spanos, "Modeling Within-Die Spatial Correlation Effects
for Process-Design Co-Optimization," In Proc. of Proc. of
the Intl. Symposium on Quality of Electronic Design, 2005.

[11] Intel, "Intel Processor Pricing", 2006, Available at
http://www.intel.com/intel/finance/pricelist/processor_price_
list.pdf?iid=InvRel+pricelist_pdf

[12] N. S. Kim, D. Blaauw, and T. Mudge, "Leakage Power
Optimization Techniques for Ultra Deep Sub-Micron Multi-
Level Caches," In Proc. of International Conference on
Computer Aided Design, 2003.

[13] X. Liang and D. Brooks, "Mitigating the Impact of Process
Variations on CPU Register File and Execution Units," In
Proc. of International Symposium on Microarchitecture,
2006.

[14] M. Miller, "Manufacturing-aware Design Helps Boost IC
Yield", Sep. 2004, Available at
http://www.eetimes.com/news/design/features/showArticle.j
html;?articleID=47102054

[15] S. R. Nassif, "Modeling and Analysis of Manufacturing
Variations," In Proc. of IEEE Conference on Custom
Integrated Circuits, May 2001.

[16] S. Natarajan, M. A. Breuer, and S. K. Gupta, "Process
Variations and their Impact on Circuit Operation," In Proc.
of International Symposium on Defect and Fault Tolerance
in VLSI Systems, 1999.

[17] S. Ozdemir, D. Sinha, G. Memik, J. Adams, and H. Zhou,
"Yield-Aware Cache Architectures," In Proc. of
International Symposium on Microarchitecture, 2006.

[18] S. Raj, S. B. K. Vrudhula, and J. Wang, "A Methodology to
Improve Timing Yield in the Presence of Process
Variations," In Proc. of Proc. of the Conf. on Design
Automation, 2004.

[19] R. Rao, A. Srivastava, D. Blaauw, and D. Sylvester,
"Statistical Estimation of Leakage Current Considering Inter-
and Intra-Die Process Variation," In Proc. of ISLPED '03,
2003.

[20] R. R. Rao, D. Blaauw, D. Sylvester, and A. Devgan,
"Modeling and Analysis of Parametric Yield under Power

and Performance Constraints," IEEE Des. Test, vol. 22, pp.
376-385, 2005.

[21] A. Raychowdhury, S. Ghosh, S. Bhunia, D. Ghosh, and K.
Roy, "A Novel On-chip Delay Measurement Hardware for
Efficient Speed Binning," In Proc. of Intl. Online Testing
Symposium, Jul. 2005.

[22] P. Shivakumar and Norman Jouppi, "CACTI 3.0: An
Integrated Cache Timing, Power, and Area Model," WRL
Research Report 2002.

[23] SimpleScalarLLC, "The SimpleScalar Tool Set," 2001.
[24] D. Sinha, N. V. Shenoy, and H. Zhou, "Statistical Gate

Sizing for Timing Yield Optimization," In Proc. of Proc.
Intl. Conf. on Computer-Aided Design, 2005.

[25] G. S. Sohi, "Cache Memory Organization to Enhance the
Yield of High Performance VLSI Processors," IEEE Trans.
Comput., vol. 38, pp. 484-492, 1989.

[26] SPEC, "Spec CPU2000: Performance Evaluation in the New
Millennium v1.1," Dec. 2000.

[27] Sun, "OpenSPARC T1", Available at http://opensparc-
t1.sunsource.net/index.html

[28] L. Wei, K. Roy, and C.-K. Koh, "Power minimization by
simultaneous dual-Vth assignmentand gate-sizing," In Proc.
of IEEE Custom Integrated Circuits Conference (CICC),
2000.

