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ABSTRACT 

As transistor feature sizes continue to shrink into the sub-90nm 
range and beyond, the effects of process variations on critical 
path delay have amplified. A common concept to remedy the 
effects of variation is speed-binning, by which chips from a single 
batch are rated by a discrete range of frequencies. In this paper, 
we argue that under these conditions, architectural optimizations 
should consider their effect on the “batch” of microprocessors 
rather than aiming at increasing the performance of a single 
processor. We first show that the critical paths are mostly 
determined by the level 1 data caches on a set of manufactured 
microprocessors. Then, we propose three new microarchitectural 
techniques aimed at masking the effects of process variations on 
level 1 caches. The first two techniques allow individual high-
latency cache lines spanning single or multiple sets to be disabled 
at the post-manufacture testing stage. The third approach 
introduces a small substitute cache associated with each cache 
way to replicate the data elements stored in the high latency lines. 
Our new schemes can be effectively used to boost up the overall 
chip yield and also shift the chip binning distribution towards 
higher frequencies. To make a quantitative comparison between 
the different schemes, we first define a metric called batch-
performance that takes into account the chip yield and frequency 
of chips in each bin. We then analyze our proposed schemes and 
show that the resizing schemes and the substitute cache can 
increase the batch-performance by as much as 5.8% and 11.6%, 
respectively.  

Keywords: Device Variability, Process Variations, Cache 
Architecture, Fault-tolerance, Computer System Design.  

1. INTRODUCTION 
With the aggressive scaling of silicon technology, 

parameter variations are expected to have significant impact 
on the power, performance, and reliability of 
microprocessors. As transistors are reduced in size, it 
becomes harder to control variations in device parameters 
such as channel length, gate width, oxide thickness, and 
device threshold voltage. These fluctuations in the process 
parameter distributions or simply process variations cause 
increased variability in circuit performance and are likely to 
be more dominant in sub-90 nm domain. Even in a 
relatively mature technology like 130 nm, these variations 
are known to result in as much as 30% decrease in 
maximum frequency and 500% increase in leakage power 
[8]. For newer technologies, these variations can be even 
higher: 20-fold increases in leakage have been reported for 
90nm [4]. Process variations consist of With-in-Die (WID) 

and Inter-Die or Die-to-Die (D2D) parameter variations. As 
a direct impact of this, a chip may under-perform or turn 
out to be more leaky than a certain threshold and hence may 
be eventually dropped resulting in effective yield loss. A 
common practice to remedy the effects of process variations 
is speed-binning (Figure 1). Speed-binning is usually 
performed by testing each manufactured chip separately 
over a range of frequency levels until it fails. As a result of 
the inherent process variations, the different processors fall 
into separate speed bins, where they are rated and marketed 
differently. This process helps the chip manufacturer create 
a complete product line from a single design.  

 
 
 
 
 
 
 
 
 
 

Figure 1. Frequency binning in modern microprocessors. 

In contrast to speed-binning, architectural changes made 
for performance enhancements are generally analyzed by 
considering its effects on high-level metrics such as 
instructions-per-cycle (IPC) and/or cycle time. However, 
because of the effects of process variations, different chips 
can have different post-fabrication frequencies irrespective 
of the changes made. Hence IPC and clock cycle are not 
enough to judge the effects of an architectural modification 
on the performance of a whole batch of chips. As a result, 
we need to establish new metrics when the process 
variations are considered. Chip yield is one obvious metric, 
as the continuing downward scaling of transistor feature 
sizes has made fabrication considerably more difficult and 
expensive [14, 17, 15]. However, an approach that 
optimizes solely for yield, would not take into account the 
fact that CPUs concurrently manufactured using a single 
process are routinely sold at different speed ratings and 
prices. For example, from a manufacturer’s perspective, 
having a 20% yield where the chips have 2.4 GHz 
frequency may be more desirable than having a 50% yield 
where the processors have 1.0 GHz maximum clock 
frequency. In this paper, we propose a new metric called 
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batch-performance (BP) to capture the effects of 
architectural changes. Batch-performance corresponds to 
the average performance of the batch of chips manufactured 
using a given architecture, therefore captures the 
distribution of chips as well as the chip yield. In Section 
5.2, we provide a detailed explanation of this metric. 

In addition to proposing this new metric, we investigate 
the effects of cache resizing schemes on batch-performance 
and then propose a novel scheme called Substitute Cache 
(SC) that aim at improving overall binning distribution with 
post-fabrication modifications. First, we study the impact of 
two resizing schemes namely, One-Way Sizing (OWS) and 
Multi-Way Sizing (MWS). OWS disables selected cache 
word lines with critical or near-critical delay. By disabling 
the high-latency word lines after manufacturing, this 
approach improves the yield at the low end of the frequency 
distribution, and also increases the likelihood that any valid 
chip will be placed in a higher-frequency bin. MWS 
extends this idea to a word line as it spans multiple sets in 
the cache, working off the theory that a high-latency word 
line in a single cache set would also likely be a critical path 
in the other sets. In addition to these schemes, we also 
propose the SC scheme, in which the level 1 (L1) cache is 
augmented with a small substitute cache storing the most 
critical cache words. With the help of minimal control 
logic, the processor can fetch data from SC instead of the 
main data array whenever a read/write access is made to 
these critical words. Hence access latency is minimized 
with no extra cache misses.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Delay distribution of each microarchitectural unit 
for a set of 1100 processors. The cumulative distribution gives 

the critical path of the chip. 

The reason why we emphasize on caches is because L1 
caches are likely to be the critical path under process 
variations. Figure 2 illustrates the latency distributions of 
various architectural units; for a set of 2000 simulated chips 
(the details of the modeling framework are described in 
Sections 2 and 3). The analysis reveals that 58.9% of the 
critical paths lie in the L1 cache. Therefore, in this work, 
we focus on the level 1 cache. 

Although our techniques will have impact on various 
design stages, such changes remain minimal. The cache 
resizing schemes may impact the cycle per instruction (CPI) 
of the processors, however, as we show in Section 4.1, 
these effects are limited to 0.3% on average across 

SPEC2000 applications. On the other hand, the proposed 
schemes have significant impact on the binning distribution. 
As we describe in Section 5, we simulate the effects of 
process variations on yield and binning distribution using 
SPICE. These results are fed into parameterized binning 
models, which show that applying our OWS approach to 
current processor architectures could lead to a 4.32% 
increase in batch-performance. Similarly, MWS shows a 
5.83% increase. For the SC technique, this increase can 
reach 11.59%. These gains are achieved mostly through an 
increase in the number of chips in the higher-frequency 
bins. It should be noted that alternative approaches like 
Error Correcting Codes (ECC) could not be used for our 
purpose. The errors in timing violations generally cause 
high number of bit flips, under which realistic ECC 
schemes fail. 

The remainder of this paper is organized as follows. In 
the following section, we describe our methodology for 
measuring the effect of process variations on a 
representative processor architecture. Section 3 describes 
how we model the binning. In Section 4, we present the 
proposed cache architectures in detail. Experimental results 
detailing the effects of our approaches on the binning 
distribution with its implications on the overall batch 
performance are presented in Section 5. Related work 
pertaining to this area is presented in Section 6. Finally, the 
paper is concluded in Section 7 with a brief summary. 

2. PROCESS VARIATIONS AND MODELING 
This section presents a description of the cache 

architecture we use in this paper and describes how we 
model process variations. Note that at this stage we confine 
ourselves to analyzing level 1 caches only.  

2.1 Processor Model  
To model a processor core, we have taken into account 

the classical 7-stage pipeline in Alpha-21364 (EV7) 
architecture. The main critical components of our processor 
are the Issue Queue, the Integer Execution Unit, the 
Register File, and the L1 Data cache. All the above 
components were modeled in SPICE using the 45nm BPTM 
technology models [5]. The issue queue is based on that of 
EV7 and has 20 entries. The register file is an 80-entry 
structure with 4 read and 2 write ports. The integer 
execution unit is modeled using the netlist generated after 
synthesizing the corresponding component in the Sun 
OpenSPARC [27]. Our L1 cache is a 32 KB 4-way set 
associative cache, the model of which is based on the 
architecture described by Amrutur and Horowitz [3]. Each 
of the 4 ways of our cache is further divided into 4 banks. 
Each bank has 128x128 cells or storage bits. Thus, each 
bank has exactly 128 rows (i.e., lines) and can hold 2-KB of 
data. The bitline delays are reduced by partitioning them 
into two. To account for the effects of submicron 
technologies on circuit behavior, we added coupling 
capacitances at three places in the cache: between the lines 
in the address bus from the driver, between parallel wires in 
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the decoder, and between bit-line and bit-line bar. 
Furthermore, these lines as well as global and local word 
lines are replaced by distributed RC ladders representing 
the local interconnect wires inside the cache.  
2.2 Simulating Process Variations 

Process variations can be defined as statistical variations 
in circuit parameters like gate-oxide thickness, channel 
length, Random Doping Effects (RDE), etc., due to the 
shrinking process geometries [4, 16]. As mentioned before 
they mainly consist of D2D and WID variations. D2D 
variation refers to the variation in process parameters across 
dies and wafers, whereas WID variation is the variation in 
device features within a single die, causing non-uniform 
characteristics inside a chip. Independent of their types, 
process variations generally fall into two categories: 
spatially-correlated variations where devices close to each 
other have a higher probability of observing a similar 
variation level, and random variations causing random 
differences between various devices within a die.  

To measure the impact of process variations on the 
delay and leakage of our cache model, we considered 5 
different variation parameters. These are metal thickness 
(T), inter-layer dielectric thickness (ILD or H), line-width 
(W) on interconnects, gate length (Lgate), and threshold 
voltage (Vt) for the MOS devices. We picked separate 
values for T, H, W, Lgate, and Vt for the decoder, pre-charge 
circuits, memory cell arrays, sense amplifiers, and output 
drivers of each cache, using the variation limits given by 
Nassif [15]. Similarly, various parameter values are 
selected for the remaining components. The mean and 3σ 
values for each source of variation are listed in Table 1. 

Table 1. Nominal and 3σ variation values for each source 
of process variations modeled 

 

 Gate Length 
(Lgate) 

Threshold 
Voltage (Vt) 

Metal 
Width (W) 

Metal 
Thickness (T)

ILD 
Thickness (H)

Nominal 
 Value 45 nm 220 mV 0.25µm 0.55µm 0.15µm 

3σ -  
Variation [%] ±10 ±18 ±33 ±33 ±35 

 
 
 
 
     
 
 
 
 

Figure 3. Maps showing the variation of threshold voltage for 
different range parameters: φ = 0.3 (left) and φ = 0.5 (right).  

We model both systematic and random process 
variations for our processor model. To take into account the 
spatial correlation we use a range factor (φ) in the two 
dimensional layout of the chip. Thus, each process 
parameter can be expressed as a function of its mean (µ), 
variation (σ), and the range (φ) values. If two points xi and 
yi in a 2D plane are separated by a distance di, then the 

spatial correlation factor between them can be described as 
an inverse linear function involving φ and di. Note that 
there is no correlation between two spatial points, which are 
φ units or more apart. In addition to the spatially-correlated 
variations, we also model random variations in the process 
parameters. To model them, we chose process parameters 
randomly from a uniform distribution. Spatially correlated 
process variations are found to be the dominating factor 
[10]. In addition, the contribution of the random variations 
to the overall variations changes according to the parameter 
[10]. Therefore, we have set lower levels of random 
variations compared to systematic variations and generally 
the amount of random variations do not exceed 30% of the 
total variation. With this background, we have generated a 
spatial map of various parameter values using the R 
statistical tool [1]. Figure 3 shows the different threshold 
voltage maps for φ set to 0.3 and 0.5. We must note that φ 
value has a considerable impact on the randomness of the 
parameter values. A higher φ means that the values are 
highly correlated, whereas a low φ value results in a highly 
random parameter value distribution. To extract the 
parameter values corresponding to the different functional 
units, we use the floorplan of Alpha EV7 processor. In 
other words, the process variation values for the chip were 
generated first, followed by the extraction of the values that 
correspond to the particular positions of the studied 
components from this modeled chip.  

3. MODELING SPEED-BINNING  
In order to effectively estimate the binning distribution 

and demonstrate the effect the process variations on it, we 
chose a set of 1100 chips for our analysis. Using the process 
parameters described in Section 2, their delay and leakage 
current values are obtained from SPICE simulations for the 
cases when φ=0.3 and φ=0.5, which in turn are used to 
determine the binning and yield loss. The cut-off for delay 
has been set to be the sum of the mean and standard 
deviation of the delay of the simulated chips (µ + σ), 
whereas the leakage cut-off has been set to be three times 
the mean leakage value. These limits are based on previous 
studies [20].  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Normalized leakage and delay distribution scatter 
plot for simulated chips showing the binning for 5-bin 

strategy. B0 through B4 represent the bin numbers from 
lowest to highest frequency 
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Most processor families are available in discrete 
frequency intervals. For example, the frequency for the 
Intel Pentium 4 processor family starts with 3.0 GHz and 
reaches 3.8 GHz with equal intervals of 0.2 GHz [11]. 
Similarly, other commercial processors by AMD, Intel, and 
Texas Instruments (TI) are marketed with 5 or 6 different 
frequency ratings. Our binning methodology also assumes 
equal binning intervals. This interval is chosen depending 
on the number of bins to be generated. Regardless of the 
number of bins, any chip that has a delay greater than the ‘µ 
+ σ’ limit is referred to as a delay loss. Chips that satisfy 
this criterion are used for binning into discrete bins starting 
from the slowest to the fastest bin. Within each bin, the 
chips that are lost due to excessive leakage (exceeding the 
limit of 3x mean leakage) are referred to as the leakage loss. 
Figure 4 shows the distribution of the normalized leakage 
power consumption versus the distribution of processor 
latencies for the base case (i.e., without any architectural 
optimizations) for the 1100 simulated chips for φ value of 
0.5. It also shows the binning for a strategy that generates 5 
distinct bins. In this case, the chips that lie within ‘µ + σ’ 
and ‘µ + 0.5σ’ delay values are put into Bin0 (denoted by 
B0 in Figure 4). These correspond to the slowest chips. 
Similarly, chips with latencies within ‘µ + 0.5σ’ and ‘µ’ are 
assigned to Bin1. The intervals for the remaining bins are 
set following the same ‘0.5σ’ interval. Note that the highest 
bin consists of the chips with delay values less than ‘µ – σ’. 
Using a similar methodology, we model a strategy that 
generates 6 bins. In this case, we reduce the binning interval 
to ‘0.4σ’. Hence, Bin0 consists of chips that fall between ‘µ 
+ σ’ and ‘µ + 0.6σ’, Bin1 consists of chips that fall between 
‘µ + 0.6σ’ and ‘µ + 0.2σ’, and likewise. 
4. PROPOSED CACHE ARCHITECTURES 

In the first part of this section, we first describe cache 
resizing schemes One-Way Sizing (OWS) and Multi-Way 
Sizing (MWS). In Section 4.2, we describe a novel cache 
architecture called Substitute Cache (SC), which masks the 
effects of process variations by including extra storage in 
the cache. These schemes aim at increasing the number of 
chips in the higher frequency bins and hence improve the 
average performance of the manufactured chips. 

4.1 Cache Resizing Schemes 
The main idea in these schemes is to analyze the design 

of the cache, determine the word lines that can cause a 
delay violation and then modify the cache architecture such 
that these word lines may be disabled. In the core of these 
ideas lies one common characteristic: if a path is found to 
be a critical path in a cache architecture, it will be the 
critical path in a large number of chips. In general, when 
process variations are considered, it is hard to determine a 
single path that is the critical path. Therefore, each path is 
associated with a probability of being a critical path. If this 
probability is X%, the corresponding path is expected to be 
the critical path in X% of the manufactured chips. In our 
cache model, we have observed that these probabilities can 
be very high. Particularly, our analysis of the cache 

architecture and the process variation simulations (see 
Section 2) reveal that one particular word line is the critical 
path in 67.3% of the 1100 caches we have studied. The 
reasons for this phenomenon are two-fold. First, cache 
architectures are regular; most paths exhibit the same 
characteristics. Second, because of spatial correlation in 
process variations, all the word lines are affected similarly. 
The consequence of this phenomenon is crucial: if we select 
a word line to be the critical path during the design process, 
it will be the critical path in many chips and hence disabling 
it may reduce the overall cache delay.  

4.1.1 One-Way Sizing (OWS) 
As the name suggests, One-Way Sizing (OWS) refers to 

the cache resizing scheme when resizing is restricted to a 
single cache way. The main idea in OWS is to disable word 
lines that are likely to generate cache delay violations or 
cause the chip to be placed in the lower bins. Take for 
example the 4-way set associative cache described in 
Section 2.1. If due to the effects of process variations the 
incurred extra delay makes the cache very slow, then 
turning off the delay-intensive line will be helpful in 
decreasing the cache latency. As a result, the chip can be 
placed in a higher-frequency bin. Our OWS scheme is 
based on this concept. Particularly, we first analyze the 
cache architecture and determine the critical paths. Each 
critical or near-critical path corresponds to a word line. 
Then, we select n such paths and change their word line 
select bit logic to allow the designer to disable them (i.e., 
turn them off). The number of cache rows or word lines to 
be disabled depends on the cost and overhead the designer 
is willing to allow. For example, OWS-4 refers to disabling 
the 4 most critical word lines of the cache. Note that, to 
simplify the process of disabling, we do not allow each line 
to be turned on/off individually. On the contrary, all the 
selected lines are enabled/disabled together. To clarify the 
process, consider the process of developing the OWS-8 
scheme. For OWS-8, we first analyze the delay of all word 
lines in a cache way. In our cache architecture, there are 
128 such lines; hence, we order them according to their 
expected latency. Then, we choose the topmost 8 and 
change their word line select logic. This can be performed 
by adding an additional input to the AND gates that activate 
the local word line select signals. This additional input is 
used for the enable signal. The enable signals for all the 8 
word lines are connected to the same “resize enable” signal. 
After the manufacturing, using this enable signal, the 
designer can choose to disable all the selected 8-rows. If 
one of these word lines is the critical path, the total delay of 
the cache will be reduced. As a result, the chip may be 
placed in a higher bin.  

Note that, in OWS, each cache way has a separate 
“resize enable” signal. As a result, the speed-binning 
process after the manufacturing needs to be changed to test 
the overall delay while each of these signals is asserted. 
Although it is possible to control each enable signal (and 
hence the cache way) individually, the number of possible 



 

combinations can be large. In addition, if several word lines 
corresponding to the same index are disabled, the 
associativity for those indexes may decrease, potentially 
resulting in a large number of cache misses. Therefore, we 
allow at most one set of disabled words lines. In other 
words, only selected word lines from one cache way can be 
disabled at a given time. To implement this, each “resize 
enable” signal will be asserted sequentially during the 
testing stage, and one signal will be allowed to remain high 
if this changes the outcome of the speed-binning. 

4.1.2 Multi-Way Sizing (MWS) 
OWS aims to locate the likely critical paths in a cache 

and embed enable/disable signals for them, so that these 
word lines can be disabled. However, if a word line is the 
critical path in one of the cache ways, it is very likely to be 
the critical path in the remaining ways. As a result, although 
OWS can disable one of these paths, the remaining ones 
will still be enabled and cause a long cache access delay. 
Another drawback of the OWS scheme is the increased 
complexity due to the “resize enable” signals in each way. 
The Multi-Way Sizing (MWS) technique aims at attacking 
these limitations. Particularly, MWS disables all the chosen 
critical word lines from all the cache ways instead of 
disabling the word lines in a single cache way as done in 
OWS. To explain the idea, consider that word line N is 
determined to be the most likely critical path. Then, similar 
to the OWS scheme, MWS will change the AND gates on 
word line N to allow it to be disabled. However, unlike 
OWS, MWS will allow the designer to disable all word line 
N’s from all the cache ways simultaneously. If the word 
line N is the critical path in all the cache ways, this will 
eliminate the longest path in each way and cause a 
significant reduction in the cache delay. Because of the 
spatial correlation of process variations, the probability that 
the same index remains the critical path in different cache 
ways is high; in these cases MWS improves upon OWS.  

 
 
 
 
 
 
 
 
  
 

 
 

Figure 5. The mapping of indexes to word lines for MWS. 
Straddled blocks show the lines disabled by the “resize 

enable” signal. 

A second advantage of the MWS scheme is the 
reduction in the number of enable/disable signals. Since the 
decision of enabling/disabling is done for the whole cache, 
the cache will implement a single “resize enable” signal as 

opposed to one for each way in the case of OWS. This will 
reduce the complexity of the control circuitry.  

For MWS, similar to OWS, the designer has to select 
the number of rows that will implement the enable/disable 
signals. If 4 word lines from each cache way are connected 
to the “resize enable” signal, the scheme is called MWS-4. 
Note that, this corresponds to disabling 16 word lines 
simultaneously for a 4-way cache.  

A problem with the MWS technique is that when a 
cache line is disabled across all the ways, that index loses 
its address space. For the above-presented example, if we 
decide to disable all the word lines N, then any addresses 
with the corresponding index will miss in the cache. To 
tackle this issue, the orientations of the decoder lines are 
changed in such a manner that no identical indexes are 
disabled in two different ways. To be precise, we modify 
the mapping of indexes to word lines in each cache way 
such that each index can be disabled at most once. Figure 5 
presents the change of the mapping for a 4-way, 32-entry 
cache (8-entries for each way). The initial word lines to be 
disabled are found using the delay analysis. In our example, 
these are lines 2 and 5. Then, for the remaining cache ways, 
the rows to be disabled are found by considering the lowest 
row number that has not yet been placed into a disabled 
line. In our example, these are lines 0 and 1 for cache way 
1, lines 3 and 4 for cache way 2, and lines 6 and 7 for cache 
way 3. The remaining rows are mapped to remaining index 
numbers in order. As a result of this reordering, when the 
cache is resized, the associativity for each index reduces by 
at most one. Particularly, for our example architecture, each 
index has exactly 3 enabled rows, hence, the cache miss 
rate will be identical to that of a 3-way associative cache 
with 24 total entries. 

  
 
 
 
 
 
 

Figure 6.  Post-decoder implementation for changing the index 
to word-line mapping. 

This remapping of the indexes to word lines can be 
implemented by changing the post-decoders that are 
implemented in high-performance caches. Particularly, the 
decoders in modern caches work in two stages: a pre-
decode and a post-decode stage. The pre-decode stage 
generates a number of signals and broadcasts them to each 
word line, where the post-decoders are waiting for certain 
combinations. The new mapping of the indexes to word 
lines can be implemented by simply changing these 
combinations. The post-decoder implementations for the 
cache architecture shown in Figure 5 are depicted in Figure 
6. The signals A0, A0', A1, A1', A2, and A2' are produced 
by the pre-decoder. The select logic (i.e., transistors on the 
word line select logic) for each word line corresponds to the 
post-decoder stage. As shown in the figure, by simply 
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reordering the locations of these transistors, we achieve the 
desired reordering. Note that this change does not incur any 
penalty on the delay of the cache. 

4.1.3 Complexity of Resizing  
Both our MWS and OWS schemes have design 

overheads. Note that we implement the enable signals on 
the critical paths of the cache; hence any change, due to our 
schemes, increases the cache delay. The particular 
modification we make to the cache is to change the 2-input 
AND gate that enables the word line select signal to a 3-
input AND gate. We found that the delay overhead for this 
extra circuitry is 0.75% on average. This increase in delay 
has an impact on the binning of the chips. However, we 
must note this overhead is not applicable to MWS when 
these lines are disabled. To be precise, when the selected 
word lines are disabled, they will never be used throughout 
the lifetime of the chip. Therefore, the delays of these lines 
are not considered during the critical path analysis, hence 
the overall delay is not affected for MWS. For OWS, on the 
other hand, this increase in delay may have an impact on 
the cache delay. Since OWS disables word lines in only one 
of the cache ways, the delay of the word lines in the 
remaining cache ways may increase, which in turn will 
increase the critical path delay. 

4.1.4 Effects of MWS and OWS on Cycles-per-
Instruction (CPI) 

Since we are performing cache resizing, our schemes 
may increase cache miss rates, which will result in 
performance degradation. In this section, we analyze how 
our schemes change the cycles-per-instruction (CPI) for the 
SPEC2000 applications. SimpleScalar 3.0 [23] simulator is 
used to measure the effects of our proposed cache resizing 
techniques. The necessary modifications have been 
implemented on the base simulator to model selective cache 
replay, the buses between caches, and port contention on 
caches. Changes were also made to SimpleScalar to 
implement the cache resizing schemes, which disable 
certain indexes from corresponding cache ways. The base 
processor is a 4-way processor with an issue queue of 128 
entries and a ROB of 256 entries. The simulated processor 
has disjoint level 1 data and instruction caches: level 1 data 
cache is a 32 KB, 4-way set associative cache with block 
size of 64-bytes and latency of 4 cycles, and the level 1 
instruction cache is a 32 KB 4-way set associative cache 
with block size of 32-bytes and latency of 2 cycles. The 
level 2 cache is a unified 1024 KB, 8-way set associative 
are cache with 128 byte block size and 20 cycle latency. 
The memory access delay is set to 350 cycles. We have 
performed our simulations using 11 floating point and 12 
integer benchmarks from the SPEC2000 benchmarking 
suite [26].  

Figure 7 and Figure 8 present the increase in CPI for the 
MWS and OWS schemes, respectively. The average 
increase in the CPI is 0.08% for MWS-8 and 0.02% for 
OWS-8 schemes. Among the studied applications, only two 
exhibit an increase in CPI exceeding 0.3%: gzip and apsi. 

For these applications, the increases in CPI for the MWS-8 
scheme are 0.55% and 0.32%, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Performance results for OWS schemes for the 
SPEC2000 applications 

 
 
 
 
 
 
 
 
 
 
 
Figure 8. Performance results of MWS schemes for the 

SPEC2000 applications. 

Note that the schemes disable sporadic indexes, and 
hence different indexes have varying associativities, 
creating heterogeneous cache architecture. Therefore, the 
increase in the CPI for these two applications is directly 
caused by their usage of the disabled indexes. 

4.2 Substitute Cache  
The main downside of the schemes discussed in 

previous section is the performance impact of resizing the 
cache in terms of increased CPI levels. Our third scheme 
named Substitute Cache (SC) attacks this problem. The idea 
in the SC is to augment each cache way with extra storage 
that will be used if certain locations in the main cache 
exhibit long latencies. In such cases, the data will be read 
from the substitute cache, and chips from the lower 
frequency bins can now be placed in higher frequency bins, 
because the high latency lines are not used. Moreover, some 
of the chips, which could have failed due to high access 
latencies, will be added to the overall yield. 

The anatomy of the proposed cache architecture is 
shown in Figure 9. For the sake of clarity we detail the use 
of SC on a single cache way; however, each cache way has 
a similar SC associated with it. SC is similar to a fully-
associative cache structure. In our study, its size is either 4 
or 8 entries. As opposed to the L1 cache, SC has smaller 
line sizes. Particularly, it consists of only 64-bit entries, 
because it stores words of the main data array. Instead of 
storing the whole cache line, only the critical word in the 
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line is stored in the SC, because our study reveals that the 
words with maximum access latency are always the ones 
that are furthest from the decoder. As a result, by just 
storing these words, we obtain the same improvement in 
cache frequency while keeping the SC size small. However, 
if necessary, words in other locations can also be placed 
into the SC. An SC is divided into 2 components: an index 
table and a data array. Note that the SC uses the column 
multiplexers and output drivers of the main array. 
Whenever a cache word is placed in the data array of the 
SC, index bits of its address, which is equal to the sum of 
the row and column addresses (10 bits in our architecture) 
are placed in the index table of the SC. For example, if we 
decide to place the word with index value 0x044 to the SC, 
we will have an entry in the index table with value 0x044. 
Note that this word would have resided in the row with 
index 0x8 in the main array with the column address being 
equal to 0x4. In case of a data access, the index table is 
checked with the index bits of the address. A match implies 
that the data will be read from the SC instead of the main 
array. Specifically, if the index of the address is found in 
the SC index table, the contents of the corresponding data 
array row are forwarded to the column multiplexers of the 
main array. The additional control logic shown in Figure 9 
will then set the column multiplexers correctly. If the index 
of the address does not match any index table entries, the 
main array will be accessed. Even if there is a match in the 
index table, the access can still miss in the cache if the 
corresponding tag does not match. However, the tag 
structure is not affected by the addition of SC. If there is a 
miss due to tag mismatch, we will still output the data, 
which will be ignored because the tag will indicate the 
miss. Overall, the tag match/mismatch is independent of the 
SC design. We only care whether the corresponding parts of 
the address match with the values stored in the index table 
and decide whether to supply the data from the main array 
or the SC.  

Now let us consider a typical read operation in the main 
array. The row address part of the index field selects the 
appropriate row in the data array through the row decoder. 
The appropriate word is then chosen by the column 
multiplexers with the help of the column address bits of the 
index. One of the key observations is the difference 
between the time taken by each of these steps. Particularly, 
the inputs to the column multiplexers are available at the 
same time the decoder is accessed. However, the signals 
provided to the decoders will traverse through the decoder 
logic, the word lines, the memory cell, the bit lines, and the 
sense amplifiers before it will reach the column 
multiplexers. We utilize this imbalance to operate our SC 
structure. As soon as the address is available, we start 
accessing the SC index table. If they record a hit, we 
change the input to the column multiplexers to 0. In other 
words, we forward the output of the SC as the output of the 
cache. If, on the other hand, there is no match in the index 
table, we will set the column multiplexer to the original 
position indicated by the column address. If the time to 

check the index table in the SC is less than the delay of the 
data array (the sum of the delays of the decoder, word line, 
memory cell, bit line, and sense amplifier), then, this 
operation does not cause any delay overhead on the cache, 
because while the data array is accessed, we would have 
already determined the hit/miss in the SC index table. 
Using CACTI 3.2 [22] we found the total access latency for 
a 8-entry SC to be 0.28 nanoseconds; whereas the latency 
for the main array (one set of the 32KB 4-way set 
associative cache) is 0.40 nanoseconds. Therefore, the SC 
access can be completely overlapped with the main array 
access and will not cause any increase in the cache access 
latency. The only change in the latency of the main array is 
due to the changes in the column multiplexers. Because of 
the data forwarding from the SC, the column multiplexers 
(straddled in Figure 9) have an additional input coming 
from the SC data array. The analysis with our SPICE model 
reveals that this overhead is 0.34% of the overall cache 
access latency. We include this overhead during our 
binning analysis in Section 5.1. Note that there is no 
performance loss in terms of CPI for the SC scheme, as 
the effective cache size remains unchanged. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. One cache way of a 32KB 4-way set associative L1 
cache augmented with Substitute Cache. Column muxes are 

shaded as they select data from 9 inputs as opposed to 8 
inputs. 

Similar to a read operation, a write access (either a store 
operation or write operation during the replacement of a 
cache line) selects the appropriate index using the row and 
column addresses and updates the selected word in the 
cache way selected by the Way-Select Logic. In case of the 
SC, the index table is checked for the index of the data 
word to be written. If there is a match, the new data word is 
loaded in the data array of the SC.  

One of the key components during the operation of SC 
is the index table. After the chip is manufactured, a Built-
In-Self-Test (BIST) is performed where n most critical 
cache indices are chosen and placed in the SC index table. 
Note that, these values are extracted only once during the 
lifetime of the chip and never changed. Therefore, they can 
be extracted by the BIST and become part of the booting 
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process, where they are read from a permanent location and 
placed into the index table every time the processor boots. 
We must mention that we neglect any impact of process 
variations on the SC since it is much smaller than the L1 
cache and its latency is significantly lower, hence it is 
unlikely to become the critical component. Finally, it 
should be noted that the size of the SC dictates the area and 
power overhead of this approach. With the help of SPICE 
and CACTI, we found the total power overhead to be 6.0% 
and 6.5% of the main array for a 4- and 8-entry SC, 
respectively. The area of the cache increases by 3.7% and 
4.1% for the 4- and 8-entry SC, respectively. 

Overall SC scheme chooses the lines dynamically so it 
is not based on any variation model, as compared to cache 
resizing schemes rely strongly on the systematic variations. 

5. EXPERIMENTAL RESULTS  
In this section, we describe the analysis of our proposed 

schemes. Section 5.1 describes how our schemes change the 
outcome of the speed-binning, whereas Section 5.2 
illustrates the gain in batch-performance.  

5.1 Binning Results 
This section presents the binning results based on the 

binning methodology described in Section 3. Since our 
binning schemes are divided into two categories, namely 5-
bin and 6-bin strategies, we describe them separately. For 
both 5-bin and 6-bin strategies, the proposed MWS, OWS, 
and SC schemes are applied and the resulting changes in the 
number of chips in each bin are found. To find how the 
chips are placed into different bins, we first analyze our 
architecture with the base cache and find the mean and 
standard deviation of the 1100 cache delays. Then, based on 
these values, the boundaries for each bin are set. We then 
apply the MWS, OWS, and SC to find the new delays for 
each chip and find the corresponding bin distribution.  

Figure 10 and Figure 11 show the binning results for 5-
bin strategy for MWS and OWS, respectively. The results 
for the 6-bin strategy were similar and hence are not 
presented in detail; in the next section we present the 
overall impact of the schemes for the 6-bin strategy. To 
understand the figures, consider the leftmost bar for each 
bin. This bar corresponds to the number of chips in that bin 
for the base cache architecture. The bars next to it (i.e., the 
ones in the middle) represent the number of chips in that 
bin when MWS-4 or OWS-4 schemes are applied. The right 
bars represent the number of chips in the corresponding bin 
for the MWS-8 or OWS-8 schemes. In general, we see that 
our schemes can successfully increase the number of chips 
in the higher bins. For example, in the 5-bin strategy, the 
number of chips in the highest bin (Bin4) is increased by 
8.2% using MWS-8. Figure 12 depicts the binning results 
for the SC scheme. In case of the SC, the chip yield is 
catapulted to a larger extent (14.4%). Like MWS and OWS, 
it also shows a sharp increase in the chip of the last bin for 
the 5-bin strategy.  

It is misleading to draw any conclusion about high-
frequency chip yield by simply considering the chips in the 

highest bin. The gain in the highest bins for all the 3 
schemes are accompanied by a reduction in the number of 
chips in the lower bins. However, we must note that the 
total yield is increased using these schemes. Specifically, 
the total yield increases by 4.5%, 3.5% and 9.7% using the 
MWS-8, OWS-8, and SC-8 schemes, respectively (for 
φ=0.5). Although there are no additional chips lost due to 
leakage for the resizing schemes, the SC is associated with 
a power overhead. The SC-4 and SC-8 schemes cause an 
additional 9.1% and 11.7% loss of chips, respectively. In 
spite of that, the total yield increases for SC, because it 
converts a high number of delay loss chips into yield. Even 
though the total number of chips increases, the schemes 
tend to move a larger number of chips towards the higher 
bins. As a result, the chip counts in the lower bins tend to 
decrease.  

One of the reasons for the significant change of yield 
gain from MWS-4 to MWS-8, OWS-4 to OWS-8, and SC-4 
and SC-8 is the fixed cost of implementing the schemes. As 
described in Section 4.1, implementing the resizing scheme 
incurs a circuit delay of 0.75% over the base cache 
architecture. When the “resize enable” signal is off, this 
overhead in delay is added to the critical path, whereas 
when it is on it does not affect the critical delay in the 
MWS scheme. Therefore, MWS has a more profound 
impact on the speed-binning outcome. In case of OWS, the 
overhead may cause other cache ways to become the 
critical path, limiting its overall impact. For SC, this 
overhead is even lower and hence it achieves better binning 
results than MWS. 

5.2 Impact on Batch-Performance 
To summarize the effect of the new binning 

distribution and to judge its merits, we define a new metric 
called batch performance (BP). Batch performance 
corresponds to the total performance of the chips obtained 
from a batch of microprocessors. If there are k different 
frequency bins having frequency ratings f1, f2,…, fk with 
each of them having yields n1, n2,…,nk ; the total batch-
performance is given by: 

BP = Σk (fk  x nk) (1) 
This BP formula can be is extended in two ways. First, if an 
architectural scheme has an impact on the CPI, the change 
can be captured by incorporating it into the equation. 
Specifically, if a scheme achieves an IPC of i1, i2,…, ik for 
each bin, the new batch performance will be calculated by:  

BP = Σk (fk  x nk x ik) (2) 
Finally, to find the average performance, this sum is 

divided to the number of manufactured chips. We have 
calculated the average BP for the base cache architecture 
and our proposed schemes based on Equation 2. Table 2 
presents the change in BP with our architectural schemes.    

As mentioned in Section 4.1, the MWS and OWS 
schemes introduce some performance overhead in terms of 
increase in CPI. This means that for these schemes, the 
effective IPC goes down and thus changes the batch 



 

performance. For example, increase in CPI by 0.08% for 
MWS-8 changes the effective IPC to 0.999 for the same 
(assuming base IPC to be 1). Thus the BP for MWS are 
calculated using the changed IPC. The SC scheme, 
however, has no effect on the IPC and thus the 
enhancement in binning distribution is directly converted 
into batch performance improvement. 

 
 
 
 
 
 
 
 
 
 
 
Figure 10. Binning with 5-bin strategy for MWS. 

 
 
 
 
 
 
 
 
 
 
Figure 11. Binning with 5-bin strategy for OWS. 

 
 
 
 
 
 
 
 
 
 

Figure 12. Binning with 5-bin strategy for SC 

Table 2. Increase in batch performance for various 
cache-architectures 

 
 

An important point to note here is the relative batch 
performance improvement of OWS-8 with respect to 
MWS-4. Although the latter shuts off 16 lines compared to 
8 lines in OWS-8, MWS-4 has a lower BP improvement 
than OWS-8. The main reason behind this is the high 
spatial correlation within a particular cache way, which 
restricts the criticality of a cache to a single way. In other 
words, we observe that different cache paths are affected in 
a similar manner under process variations. As a result of the 
correlation of process variations, these changes result in one 
cache way containing several critical or near-critical paths. 
Therefore, OWS becomes a more effective scheme than 
MWS, as shutting off lines within a way is preferable to 
spanning them across multiple ways. Overall, SC-8 scheme 
performs the best, improving the batch performance by 
11.5% and 11.2% for the 5-bin and 6-bin strategies under 
φ=0.5, respectively. For φ=0.3, the improvement for the 
same binning strategies are 10.5% and 11.6%, respectively. 

We must note that from a manufacturer’s perspective, 
there is a strong motivation to increase the batch 
performance. Assuming a simplistic case, a higher BP can 
translate into higher revenue: the high-frequency chips are 
sold for a higher price, hence an increase in BP will result 
in revenue increase. Overall, since the manufactured chips 
will have varying performance levels, it is logical to 
consider the overall performance of the chips rather than 
the possible enhancements to a single processor. 

6. RELATED WORK 
Mitigating the effects of process variations has long 

been the objective of circuit designers. Previous works 
show that several circuit-level techniques have been 
adopted to counter the negative effects of process variations 
[4, 6, 9, 18, 21, 24]. The inter-die and intra-die process 
variations and their effects on circuit leakage is studied in 
detail by Rao et al. [19]. In another work, Rao et al. [20] 
analyze the impact of process variations on circuit leakage 
and proposed methods to reduce them. Most of these 
techniques focus on analyzing the design statistically or by 
using static timing analysis, and then modifying the parts of 
the circuits that are most susceptible to variations. Many 
gate-sizing strategies have been used on the critical or near 
critical regions of the circuit in order to reduce the effective 
latency [7, 28].  

Performance binning has also been adopted as means of 
increasing yield [4, 8, 21]. Datta et al. [8] propose a novel 
approach of changing the effective speed-binning by gate 
sizing, and thus increasing the profit. Unlike our schemes, 
most of their analyses are based on statistical estimations of 
yield, and the optimizations are for high-level synthesis. 
Kim et al. [12] have studied the effects of cache size on 
leakage and analyzed the trade off on access time when 
multiple threshold voltages are used for level 1 and level 2 
caches. 

In the architecture domain, system-level techniques are 
studied to prevent yield loss under process variations [17]. 
Sohi’s work show that cache redundancy can be used to 

Increase in Batch Performance with 
respect to the base architecture [%] 
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prevent yield loss [25]. At a high level, SC resembles their 
cache duplication scheme. However, there are several 
differences in our implementation. Most importantly, rather 
than implementing a separate structure, we extend the main 
cache and hence can utilize many structures of it. Ozdemir 
et al. [17] present yield-aware microarchitectural schemes 
specially in cache domain, that improved the overall yield 
to as much as 97%. Liang et al. [13] target at mitigating the 
effects of process variation by introducing variable latency 
regular structures like register files. Besides, Agarwal et al. 
[2] propose a scheme that prevents yield loss due to failures 
in the SRAM cells of the cache. Their approach is mostly 
based on Built-In Self-Test (BIST) circuitry and the cache 
optimizations are concentrated towards yield maximization. 
In comparison to the abovementioned works, our efforts 
have been directed towards effective binning and batch 
performance optimization for set associative caches. In 
addition, all the previous techniques listed above have 
performance implications, i.e., different chips from the 
same family may exhibit varying performance levels. 
However, our SC scheme provides constant IPC for all the 
chips in a family. 

7. CONCLUSIONS 
Efficient binning under process variations is becoming a 

significant challenge for chip manufacturers. A 
considerable amount of effort is being made to save chips 
from excessive delay and market them properly after speed-
binning. In this paper, we studied two cache architectures, 
which are aimed at maximizing the batch-performance of a 
particular line of chips manufactured with the same process 
technology. Our first scheme, One-Way Sizing (OWS), 
tries to resize a single way of a set associative cache for 
reducing cache latencies and hence improving the 
frequency. The second approach called Multi-Way Sizing 
(MWS) extends this concept to multiple cache ways. The 
extra circuitry needed for these schemes is very small and 
the newly resized cache causes minimal reduction in the 
instruction-per-cycle (IPC) rates: 0.02% and 0.08% on 
average for the most aggressive OWS and MWS, 
respectively. As an alternative to these resizing schemes, 
we propose a novel technique called Substitute Cache (SC), 
which has no performance overhead and works by storing 
critical words of the data array in a separate structure. 
Overall, the most aggressive OWS, MWS and SC schemes 
increase the average batch performance by 4.2%, 5.8% and 
11.6%, respectively. 
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