
The Impact of Dynamic Directories on Multicore Interconnects

MATT SCHUCHHARDT, Northwestern University
ABHISHEK DAS, Intel Corporation
NIKOS HARDAVELLAS, Northwestern University
GOKHAN MEMIK, Northwestern University
ALOK CHOUDHARY, Northwestern University

On-chip interconnects consume a significant portion of processor power. We observe that a large fraction of on-chip traffic
originates not from actual data transfers, but from communication between the cores to maintain data coherence. Motivated
by this, we evaluate one method of co-locating directories near their shared data, which utilizes existing virtual-to-physical
address translation mechanisms to place directories near the data sharers. This eliminates a large fraction of on-chip
interconnect traversals, thus reducing interconnect power and energy consumption by up to 37.3% (22.9% on average for
scientific workloads, and 8.0% for Map-Reduce).

1. INTRODUCTION
To combat the increasing on-chip wire delays as the core counts and cache sizes grow,

multicore architectures have become increasingly distributed: the last-level on-chip cache is
divided into multiple cache slices, which are distributed across the die area along with the cores
(e.g., Intel Xeon Phi, Tilera Tile-Gx) [1]. To facilitate data transfers and communication among
the cores, such processors employ elaborate on-chip interconnection networks which consume 10-
28% [2,3] of the overall chip power, stressing an already limited resource. As core counts continue
to scale, the power consumption of the on-chip interconnect is expected to grow even higher.

To minimize the power consumption of on-chip interconnects, recent research proposes circuit-
level techniques to improve the power efficiency of the link circuitry and the router
microarchitecture [5], dynamic voltage scaling and power management [4], and thermal-aware
routing [6]. However, prior works miss one crucial observation: a significant fraction of the on-
chip interconnect traffic stems from packets that facilitate data coherence, rather than from packets
that transfer data.

The coherence requirement is a consequence of performance optimizations for on-chip data. To
allow faster data accesses, the distributed cache slices are typically treated as private caches to the
nearby cores, forming tiles with a core and a cache slice in each tile [1]. These caches are kept
coherent through a directory-based coherence protocol, where a distributed directory is address-
interleaved among the tiles [1]. However, address interleaving is oblivious to the data access and
sharing patterns; it is often the case that a cache block maps to a directory in a tile physically
located far away from the accessing cores. To share a cache block, the sharing cores need to
traverse the on-chip interconnect multiple times to communicate with the directory, instead of
communicating directly between them. These unnecessary network traversals increase traffic and
consume power and energy.

Tilera’s TilePro64 [12], in recognition of this effect, implements a mechanism to reduce
directory coherence traffic by allowing the software to designate a page’s home node. This
technique is similar to Dynamic Directories [11], which cooperate with the operating system to
eliminate the need to place directory entries on a predetermined tile. While TilePro64 provides the
placement mechanism, it does not advocate a specific placement policy and no evaluation of this
technique appears in the literature.

In this paper we evaluate the impact of Dynamic Directories on the performance, power, and
energy consumption of a multicore processor. We show its effectiveness under a simple directory
placement policy, which places directory entries close to the most active sharers of the
corresponding cache blocks, and compare it to Virtual Hierarchies [10], a previously proposed
technique that also helps with directory placement, and the work by Cuesta et al. [13], which for
simplicity we refer to as Private Coherence Deactivation (PCD) in the remainder of this paper.
PCD deactivates coherence tracking for cache blocks within a private page.

Compared to the baseline architecture, Dynamic Directories reduce the interconnect power and
energy by up to 37.3% (22.9% on average for scientific workloads, and 8.0% for Map-Reduce),

with negligible performance impact and hardware overhead, and save 4x more interconnect energy
than Virtual Hierarchies. Dynamic Directories exhibit the same gains as PCD on private pages.

2. ARCHITECTURE OVERVIEW
The baseline architecture is a tiled multicore modeled after [1], where each tile consists of a

processing core, private split I/D first-level caches, a private second-level cache (L2), a slice of the
distributed directory, and a router. The tiles are connected through a 2D-folded torus. Without loss
of generality, and similarly to most relevant works, we consider a full-map distributed directory
that is address-interleaved among the tiles.

Address interleaving does not require a lookup to extract the directory location; all nodes can
independently calculate it by the cache block address. However, address-interleaved placement
statically distributes the directories without regards to the location of the accessing cores, leading
to unnecessary on-chip interconnect traversals. Figure 1-a shows a typical data sharing traffic
pattern, where the directory is placed at an arbitrary node, oblivious to the location of the sharing
cores. Ideally, the directory would be co-located with the sharer at Tile 1 (Figure 1-b), which
would eliminate two unnecessary network messages and allow the sharers to communicate directly,
rather than through an intermediate node. Such placement is the goal of Dynamic Directories.
Note that even if the data are core-private, L2 misses are still routed to memory through the
directory, thereby unnecessarily involving an intermediate node.

3. DYNAMIC DIRECTORIES

Dynamic Directories, similarly to Tilera’s TilePro64, reduce unnecessary on-chip interconnect
traffic by placing directory entries on tiles with cores that share the corresponding data. To achieve
this, for every page, Dynamic Directories designate an owner tile of the directory entries for the
blocks in that page, and store the owner ID in the page table. By utilizing the already existing
virtual-to-physical address translation mechanism, Dynamic Directories propagate the directory
location to all cores touching the page through the Translation Lookaside Buffer (TLB). There are
two important aspects of this scheme: the classification of pages by the operating system (OS),
and the directory placement and distribution among the cores.

3.1 OS Support and Directory Placement
To categorize pages and communicate their directory location to the cores, Dynamic

Directories utilize the existing virtual-to-physical address translation mechanism. To access L2, a
core translates the virtual address of the data to a physical address through the TLB. Upon a TLB
miss (e.g., the first time a core accesses a page, or if the TLB entry has been evicted) the system
locates the corresponding OS page table entry and loads the address translation into the TLB.

Dynamic Directories modify this process slightly. The first time a page is accessed by any of
the cores, the page is declared private to that core (we refer to that core as the first accessor). This

D
[5]

Shr
[1]

R
[7]

Data
Request

Forward
Request

Ack

Data
Response

Off-chip Miss

On-Chip

Off-Chip

Shr
[1]

R
[7]

Data Request

Data
Response

(a) (b)

Figure 1. Data sharing traffic patterns between cores. Diagram (a) shows the packet flow
when data is requested by tile 7 for a block owned by tile 1, with its directory at tile 5.
Diagram (b) shows the data sharing traffic when the directory is co-located with the data.

information is stored in the page table. No directory entries need to be allocated for a private page,
as there is no need to maintain coherence without sharers.

If another core accesses the page, that core will also miss in its TLB as it has no valid entry.
Upon the TLB miss, the OS (or the hardware page walk mechanism) discovers that this page is
already accessed by a core, and reclassifies the page as shared. At the same time, the first accessor
core becomes the owner of the page’s directory entries and the necessary directory entries are
allocated in its tile. The directory location is recorded in the page table, and communicated to the
core through the TLB fill. Thus, any subsequent accessor of the page is also notified of the
directory location for the blocks in the page. This mechanism guarantees that the directory is co-
located with one of the sharers of the page, and at the same time provides a simple mechanism to
locate the directory entries.

When a page is reclassified from private to shared, the system needs to allocate directory
entries for the cached blocks of that page. However, directory entries for private pages are not
allocated, so when a page becomes shared, the system does not know which blocks of that page
are cached, and what state the blocks are in. The only known fact is that any blocks cached thus
far can only be at the first accessor’s cache. The least complex solution is simply to flush all the
blocks of that page from the first accessor’s cache, similar to [1], eliminating the need to allocate
directory entries for previously cached blocks. From that point on, directory entries can be
allocated on demand at the first accessor’s directory, as the first accessor remains the directory
owner. Although simple, this solution increases the cache miss rate and increases the number of
cache accesses to perform the cache flush, both of which come with potentially detrimental effects
on performance, power, and energy consumption.

Alternatively, the system can conservatively allocate directory entries for all the blocks in the
page, and declare the first accessor’s cache as the owner of the blocks. This way, all requests for
this page will be forwarded to the first accessor, who can easily resolve the state of the requested
blocks locally (both the cached blocks and the directory entries reside in the same tile). In either
method, the first accessor remains the owner of the directory entries, and the corresponding TLB
entry at the first accessor core is invalidated to remove the stale private page state (the page is now
shared). In this paper we implement the latter option: we conservatively allocate directory entries
for all the blocks in the page, as this method has negligible power and performance impact, and
the only downside is that it may allocate more directory entries than absolutely necessary during
the relatively rare reclassification events.

The Dynamic Directories mechanism allows cache coherence at the granularity of individual
cache blocks; it only places the corresponding directory entries at some tile. The placement is
performed at the granularity of pages, i.e., the directory entries for all blocks within a page are
placed at the same tile. Finer-grain placement is possible but incurs significant overhead. To
support placement at granularities smaller than a page, the TLB and page table entries would need
to store multiple directory owners (one per placement-grain), and each sub-section of the page
would generate a separate TLB trap to extract the directory location for it. However, complex fine-
grain techniques are not justified, as granularities smaller than a page provide negligible energy
benefits (Figure 3). Nonetheless, for completeness, we provide the energy savings of such a
hypothetical approach.

3.2 Thread Migration
When threads migrate, the corresponding directory entries could either (a) stay in the original

tile and be accessed remotely by the migrating thread, (b) move along with the migrating thread,
or (c) we could simply turn off Dynamic Directories.

The first option (leave the directory entries in place and let the migrating thread access them
remotely) is the simplest choice. It does not require any new mechanisms or structures, and does
not change any existing ones either. Having directories at a remote node and accessing them via
the interconnect is similar to what the baseline system already does. The downside is that the
directory placement may no longer be optimal, and the interconnect may suffer from hot spots as
all the directory entries frequently accessed by this thread are concentrated to the same remote
node. Thus, under this scheme thread migration becomes even more expensive than it already is,
thereby raising the importance of affinity scheduling. This would be the best option if threads

migrate away from their core only for short periods of time and relatively infrequently, and
quickly return back due to affinity scheduling.

The second choice (migrate the directory entries together with the thread) would preserve the
affinity of the directory entries and the thread, at the cost of identifying the entries to migrate,
performing the actual migration, and resolving any races occurring during the directory migration.
Identifying the directory entries to migrate is easy when a core executes only a single thread: all
entries owned by that tile should migrate. However, a core that executes multiple threads through
multithreading or time-sharing needs to tag the directory entries with the process/thread IDs, so
the system knows exactly which entries to move. Performing the migration would require TLB
shootdowns, and bandwidth and energy consumption on the interconnect for the actual transfer.
Races could easily appear, as requests could arrive while the directory migration is in flight, and
the system would have to handle them successfully. Overall this is an expensive proposition, akin
to traditional directory migration. It is unlikely that it would provide enough additional benefit to
justify its implementation, unless threads migrate to a new core and stay there for a very long time,
before migrating again.

It is important to note here that it is simple to turn off Dynamic Directories in pathological
cases: one bit per page could indicate whether its directory entries are managed by Dynamic
Directories or by traditional address interleaving. Thus, the third option is easy to implement.
However, the moment Dynamic Directories for a page is turned off, the page would need to go
through a process similar to reclassification: the cached blocks should be flushed from the caches,
and the corresponding TLB entries shot down so they can be updated. Thus, while easy to
implement, this solution also comes with a potentially significant overhead. To avoid excessive
overhead, Dynamic Directories should remain switched off for the entire duration of high thread
migration rates. In that case the overhead would be a one-time event amortized over billions of
accesses, and the scheme would perform almost identically to the baseline. While this would
prevent Dynamic Directories from providing any benefit over the baseline, at least it would
guarantee it does no harm.

We did not observe any significant migration rates in our workloads, hence we did not
separately evaluate these options. However, each solution is best suited for different conditions of
migration frequency and length of stay. A sophisticated system could monitor these metrics and
employ the best option each time.

3.3 Overhead
Dynamic Directories extend each TLB entry by log2N+1 bits, where N is the number of tiles.

The current Intel Core i7 (Sandy Bridge) has two-level TLBs, with 64 L1-TLB entries and 512
L2-TLB entries for a 4KB page size. For 16-core chip-multiprocessors (CMPs), Dynamic
Directories add 4 bits for the directory owner and 1 bit for the shared/private state. This amounts
to only 5.63 KB additional SRAM. We modeled the TLB with CACTI 6.5 [7] and found that the
energy overhead is negligible (0.7% of the TLB read energy).

On the software side, Linux on Intel Core i7 typically uses 64-bit page table entries, in which
bits 9-11 and 48-62 are unused. These extra bits can accommodate up to 128K cores and hence
Dynamic Directories do not add any overhead in the page table. The only software overhead
incurred is a few extra lines of kernel code to initialize the directory owner and state bits, and to
orchestrate page reclassifications when necessary.

3.4 Mechanism Justification
Instead of utilizing unused page table entry bits to encode the owner ID for the directory

entries of a page, Dynamic Directories could directly utilize the physical address bits. This could
be achieved by designating log2N bits of the physical address to encode the owner tile ID. The
selection of a physical frame for a virtual page would then be limited only to addresses that assign
to these bits the correct tile ID.

However, this would couple the memory allocation with the directory placement. Limiting
physical addresses to specific address ranges for each tile would cause memory fragmentation,
degrade performance, and complicate other optimizations that pose conflicting address translation
requests (e.g., page coloring for L1). Overloading the address bits within the cache index for
directory placement would result in these bits being all the same for pages assigned to the same

tile, thereby utilizing only a subset of the available L2 cache sets. Similarly, utilizing higher
address bits for directory placement may conflict with the bits used for DRAM bank, channel, or
column selection, leading to the underutilization of the DRAM banks, the memory channels, or the
row buffer. Moreover, if address bits are used for directory placement, each core in a N-core CMP
will be able to allocate locally only 1/N of the overall physical pages, limiting the performance
potential of Dynamic Directories if more pages are private to (or accessed mostly by) that core.

Dynamic Directories avoid all these problems by fully decoupling page allocation from
directory placement.

4. EXPERIMENTAL RESULTS
We evaluate Dynamic Directories by simulating a 16-core tiled CMP running scientific

workloads (a mixture of compute-intensive applications and computational kernels) and Map-
Reduce workloads (Phoenix). We simulate the CMP on Flexus [8], and follow the SimFlex
multiprocessor sampling methodology [9]. The full details of our simulation methodology, the
power model, and details on the simulated architecture and workloads appear at [11]. We simulate
the entire execution of the Map phase for Phoenix applications (which constitutes the majority of
execution time) and three complete iterations for the scientific applications.

4.1 Directory Placement Policy
Ideally, in the absence of directory migration, the directory entries for a page would be placed

at the tile that issues the most accesses to them. Identifying this tile, however, requires complex
techniques. Fortunately, the first accessor of a page issues on average only 6% fewer accesses than
the top accessor, and it is trivial to identify. Thereby, Dynamic Directories choose to allocate the
directory entries of a page at its first accessor.

4.2 Distribution of Directory Entries Across Tiles
Dynamic Directories may skew the distribution of directory entries to tiles, in contrast to the

uniform distribution of traditional address interleaving. If some tiles allocate vastly more directory
entries than others, they may require a disproportionately large area for the directory, or cause
traffic hotspots that degrade performance.

Figure 2 presents the distribution of directory entries across tiles for private and shared pages.
The figure shows a band of 16 bars for each workload, with the height of each bar designating
how many pages have their directories allocated at that tile. The red line indicates a hypothetical
uniform distribution.

While the distribution is sometimes skewed, the imbalance could be minimized. First, private
data are accessed by only one core, obviating the need for a directory. Thus, Dynamic Directories
allocate directory entries only for shared pages, reducing the on-chip directory capacity
requirements by 48% on average.

Second, while the directory entries for shared pages are mostly evenly distributed,
oversubscribed tiles still exist (excluding Kmeans and Fmm, a tile gets at most 18% of the
directories). Dynamic Directories have the flexibility to allocate the directories to nearby tiles or to
another sharer when the first accessor is overloaded, thus spreading the load while still
guaranteeing directory proximity to the accessing cores.

Finally, the uneven distribution of directory entries is not a direct indicator of increased traffic
hotspots. The baseline may already exhibit imbalanced traffic, some pages are colder than others,
and Dynamic Directories reduce the number of messages traversing the interconnect by 22.7% on
average, easing traffic congestion. While Dynamic Directories on Kmeans, Fmm, and Dsmc
exacerbate already existing traffic imbalances, these hotspots have a negligible performance
impact, as the applications spend only a small fraction of execution time on the distributed L2
cache. In the remaining applications, a tile may receive on average 8% more directory accesses
from remote cores compared to the baseline, but these imbalances are relatively small and do not
impact the performance (Figure 5). It is important to note here that in pathological cases it is
simple to turn off Dynamic Directories as explained in Section 3.2.

For completeness, we evaluated Kmeans and Fmm with a modified Dynamic Directories
scheme, where the directories for the shared pages are address-interleaved at block granularity,
similar to Reactive NUCA [1]. This directory placement removes the hotspots that Kmeans and
Fmm experience.

4.3 Energy Savings

We evaluate the impact of Dynamic Directories on energy and compare against three schemes:
the baseline architecture, Virtual Hierarchies (VH) [10], and Private Coherence Deactivation
(PCD) by Cuesta et al. [13]. Virtual Hierarchies implement a coherence protocol where cache
blocks are dynamically assigned home tiles. An access that misses on the local tile finds the
corresponding directory location by indexing a table using the bits of the physical address above
the block offset. Thus, all pages with the same log2N bits in the physical address have their
directory entries at the same tile. We implement a “perfect” VH where the tile with the most
accesses to a memory region becomes the home tile for the entire region. PCD deactivates
coherence tracking for cache blocks within a private page, while the directories for the shared
pages are placed according to the baseline coherence scheme (in our case, at the address-
interleaved location at block granularity).

Figure 3 presents the on-chip interconnect energy consumption of Dynamic Directories for
cache-block and page granularity (DynDir-BLK and DynDir-8K, respectively), Virtual
Hierarchies, and PCD, normalized to the energy consumption of the baseline architecture.
Dynamic Directories reduce the network energy on average by 21.2% (block granularity) and
16.9% (page granularity). VH saves only 3.9% energy on average, as it allocates directory entries
for an entire memory region, rather than individual pages.

PCD shows the same gains as DynDir-8K for private pages, as both coherence deactivation and
directory homing eliminate interconnect traversals to the directory for private data. For shared data,
PCD follows the baseline coherence and address-interleaves the directories at block granularity,
placing the directories at arbitrary nodes. DynDir-8K places the directories together with the
sharers, but placement at the page granularity increases false sharing. Overall, DynDir-8K attains
higher energy savings for shared data in some applications (e.g., dsmc), while for others block-
interleaving the directories of shared data is better (e.g., ocean).

To isolate the impact of directory homing from the adverse effects of page-grain directory
placement, we evaluated a scheme that places the directories of a shared page together at the
address-interleave page-grain location (not shown due to space constraints). We found that
homing provides significant benefits (e.g., 35% energy savings in ocean, 29% in appbt, 27% in
moldyn, and 9% in fmm). These benefits, however, are balanced out by the false sharing
introduced by page-grain directory placement. As a result, the block-level interleaving of PCD and
the directory-page-homing of DynDir-8K balance each other out across applications, resulting in
average energy savings within 4% of each other.

Figure 2. Distribution of directory entries across tiles. Flatter benchmarks indicate that the

directory entries are relatively evenly distributed across the 16 tiles.

Comparing the two classes of workloads, we observe that the scientific applications attain

higher energy savings (22.9% on average, and 37.3% maximum) compared to Phoenix (8.0% on
average). Phoenix applications exhibit a higher fraction of shared data accesses, rendering
Dynamic Directories less useful. The energy savings for all schemes are largely achieved through
a reduction of control messages. On average, Dynamic Directories eliminate 22.7% of the control
messages on the on-chip interconnect (Figure 4), while PCD eliminates 25.7% and VH eliminates
3.1%.

4.4 Performance Impact
Figure 5 shows the overall speedup of Dynamic Directories compared to the baseline

architecture. Dynamic Directories slightly increase performance in 7 out of 15 applications, and
decrease performance in 2. Dynamic Directories improve performance by up to 7% (Ocean), and
by 1.4% on average, while the maximum performance slowdown is 1.3% (PCA). Performance
improves because (a) Dynamic Directories reduce the number of network packets, which
eliminates congestion and hence reduces the effective interconnect latency, and (b) data transfers
(on-chip and off-chip) are faster because many accesses to remote directories are eliminated. The
performance improvement is limited because the working set of most applications is large, thus
Dynamic Directories’ savings are realized mostly by off-chip memory accesses. As the off-chip

Figure 4. Number of interconnect control messages (i.e., all messages except data

replies) normalized to the baseline architecture (B). Data for Dynamic Directories is
analyzed at 64-byte cache-block (d) and 8K-page (D) granularities, and compared to

Virtual Hierarchies (V), and Private Coherence Decoupling (P). The messages for
private and shared data (classified at page granularity) are shown separately. The non-

global sharing characteristics of the scientific workloads lead to generally higher
savings.

Figure 3. Network energy consumption normalized to the baseline architecture (B). Data
for Dynamic Directories is analyzed at 64-byte cache-block (d) and 8K-page (D)

granularities, and compared to Virtual Hierarchies (V), and Private Coherence
Decoupling (P). The energy consumption of requests for private and shared data

(classified at page granularity) is shown separately.

memory access latency is already large, saving a few cycles does not improve the performance
considerably.

We attribute the slowdown exhibited by PCA and Wcount to the page granularity in which
Dynamic Directories assign directories, as this assignment can cause contention and hotspots.
Especially for universally-shared pages, it is likely that blocks are accessed by different cores in
nearly-consecutive cycles, causing contention in the directory tile, and increasing the directory’s
response time. On average, we observe that the positive and negative forces cancel each other out,
leading to only a small performance improvement (1.4% on average).

5. CONCLUSION

A large fraction of the on-chip interconnect traffic stems from placing directory entries on chip
without regards to the data access and sharing patterns. Future architectures should consider the
implications of allocating directory entries close to the cores accessing the corresponding data.
The primary impact of this is a reduction of the on-chip interconnect power and energy
consumption; in this evaluation’s case, the power and energy consumption is reduced by up to
37.3% (22.9% on average for the scientific workloads, and 8.0% for Map-Reduce) with negligible
hardware overhead (5.63KB additional SRAM for a 16-core chip, and 0.7% increase in the TLB
energy) and without any adverse performance impact. As the importance of on-chip interconnects
is expected to rise with future process technologies, Dynamic Directories will scale and provide
even higher power savings.

6. REFERENCES
[1] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, "Near-optimal cache block

placement with reactive nonuniform cache architectures," IEEE MICRO, 30(1), 2010.
[2] E. Totoni, B. Behzad, S. Ghike, and J. Torrellas, "Comparing the power and performance

of Intel's SCC to state-of-the-art CPUs and GPUs," IEEE International Symposium on
Performance Analysis of Systems & Software, 2012.

[3] S. Borkar, "The exascale challenge," 20th International Conference on Parallel
Architectures and Compilation Techniques, 2011.

[4] L. Shang, L.-S. Peh, and N.K. Jha, "Dynamic voltage scaling with links for power
optimization of interconnection networks," 9th International Symposium on High
Performance Computer Architecture, 2003.

[5] H. Wang, L.-S. Peh, and S. Malik, "Power-driven design of router microarchitectures in
on-chip networks," 36th Annual International Symposium on Microarchitecture, 2003.

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

A
pp

bt

Ba
rn

es

D
sm

c

Fm
m

M
ol

dy
n

O
ce

an

To
m

ca
t

U
ns

tr
uc

t

W
at

er
sp

H
is

t

Km
ea

ns

Lr
eg

PC
A

Sm
at

ch

W
co

un
t

Scientific Workloads Phoenix

Sp
ee

du
p

ov
er

 P
ri

va
te

 N
U

CA

Figure 5. Speedup of Dynamic Directories over the baseline architecture. Performance is
slightly improved on average, with a 1.4% average speedup.

[6] L. Shang, L.-S. Peh, A. Kumar, and N.K. Jha, "Thermal modeling, characterization and
management of on-chip networks," 37th Annual International Symposium on
Microarchitecture, 2004.

[7] N. Muralimanohar, R. Balasubramonian, and N.P. Jouppi, "CACTI 6.0: A tool to model
large caches," Research Report hpl-2009-85, HP Laboratories, 2009.

[8] N. Hardavellas, S. Somogyi, T.F. Wenisch, R.E. Wunderlich, S. Chen, J. Kim, B. Falsafi,
J.C. Hoe, and A. Nowatzyk, "Simflex: a fast, accurate, flexible full-system simulation
framework for performance evaluation of server architecture," ACM SIGMETRICS
Performance Evaluation Review, 31(4), 2004.

[9] T.F. Wenisch, R.E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi, and J.C. Hoe,
"SimFlex: statistical sampling of computer system simulation," IEEE MICRO, 26(4),
2006.

[10] M.R. Marty and M.D. Hill, "Virtual hierarchies to support server consolidation," 34th
Annual International Symposium on Computer Architecture, 2007.

[11] A. Das, M. Schuchhardt, N. Hardavellas, G. Memik, and A. Choudhary, "Dynamic
directories: a mechanism for reducing on-chip interconnect power in multicores," Design,
Automation, and Test in Europe, 2012.

[12] Tilera, Tile Processor User Architecture Manual,
 http://www.tilera.com/scm/docs/UG101-User-Architecture-Reference.pdf (accessed June

7, 2013).
[13] B. Cuesta, A. Ros, M.E. Gómez, A. Robles, and J. Duato, "Increasing the effectiveness of

directory caches by deactivating coherence for private memory blocks," 38th
International Symposium on Computer Architecture, 2011.

	1. Introduction
	2. Architecture Overview
	3. Dynamic Directories
	3.1 OS Support and Directory Placement
	3.2 Thread Migration
	3.3 Overhead
	3.4 Mechanism Justification

	4. Experimental Results
	4.1 Directory Placement Policy
	4.2 Distribution of Directory Entries Across Tiles
	4.3 Energy Savings
	4.4 Performance Impact

	5. Conclusion
	6. References

